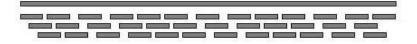
Genome Sequencing and Assembly (Sekvenovanie a zostavovanie genómov)

> Tomáš Vinař 23.9.2021

DNA Sequencing Overview


- Chromosomes are cut randomly into smaller fragments (e.g. using sonication)
- Each fragment is copied multiple times
 (e.g. through PCR, bacterial cloning, ...)
- 3. Ends of fragments are sequenced by one of the sequencing technologies
 - \Rightarrow many short strings called **reads**
- 4. Short strings are **computationally assembled** back into chromosomes

Overview of Sequencing Technologies

Technology	Read length	Errors	Output per day	Cost per MB	
1st generation					
Sanger	up to 1000bp	< 1%	3 MB	\$4000	
2nd (next) generation (cca 2004)					
Illumina	250bp	< 0.1%	150 GB	\$0.03	
3rd generation (emerging)					
PacBio	cca 14kbp	10%	700 GB	\$0.02	
PacBio HiFi	cca 15kbp	< 1%	70 GB	\$0.20	
Oxford Nanopore	really long	up to 10%	50 GB	\$0.02	

Bioinformatics Problem: Sequence Assembly (zostavenie genómu)

- **Input:** short DNA fragments (reads)
- **Goal:** reconstruct the sequenced genome
 - using sequence identity in overlapping reads
- Important factors:
 - Size of the genome
 - Length of individual reads
 - Coverage how many times on average is the genome covered?

Simple but Unrealistic Formulation

Shortest common superstring problem.

We are given several strings $S_1, \ldots S_k$ (sequenced reads), find the shortest string S containing each S_i as a (contiguous) substring

Motivation: use overlaps between reads as much as possible

Example:

Input: GCCAAC,CCTGCC,ACCTTC Output: CCTGCCAACCTTC (reads connected in order S_2 , S_1 , S_3)

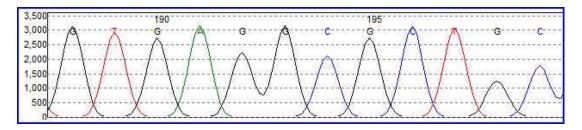
Shortest Common Superstring

• NP hard problem

no known polynomial-time algorithm can find optimal answer for each input

- **Simple heuristics:** repeatedly find two reads with longest overlap and connect them to a single read
- Example: CATATAT, TATATA, ATATATC Optimum: CATATATATC, length 10 Heuristics: CATATATCTATATA, length 14
- This heuristics is an approximation algorithm: It finds a string which is at most 3.5× longer than optimal superstring
- Conjecture: it is in fact a 2-approximation algorithm
- There is a different 2.5-approximation algorithm

Shortest Common Superstring: Unaccounted Factors


- Sequencing errors
- Polymorphism
- Two strands (reads come in two different orientations)
- Contamination (e.g. by DNA from bacteria used for cloning), chimeric reads
- Multiple chromosomes, incomplete genome coverage
- Sequence repeats

 cca 50% of human genome is repetitive DNA
 Example: 10xTTAATA, 10xATATTA, 3xTTAGCT
 TTAATATTAGCT?
 TTAATATTAATATTAATATTAATATTAGCT?
 TTAATATTA + ATATTAGCT?

Unaccounted factors: base quality

- Reads typically accompanied by **base qualities** How likely is this base correct?
- Base with quality q ⇒ probability of error 10^{-q/10}
 i.e. base with q > 40 is correct for 99.99%

Example of Sanger sequencing result (trace):

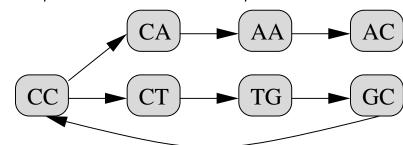
Shortest Common Superstring: Simplifying Factors

Additional information: pair-end reads

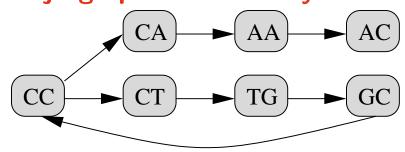
500bp known distance

500bp

plasmid 2–10 kB cosmid 40 kB

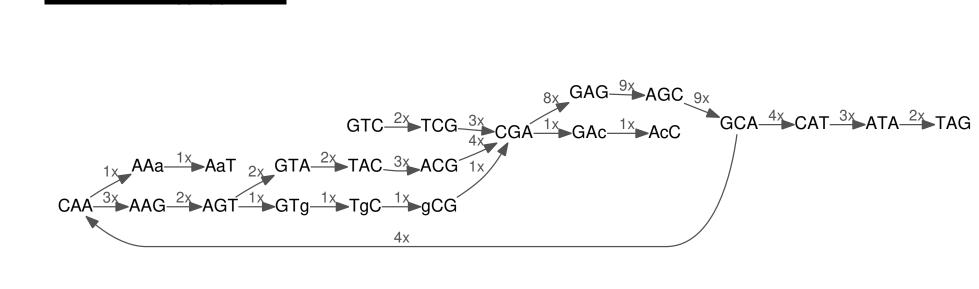

Simplification: we do not need to connect everything to one string, we connect only parts bridged by multiple reads. Conservative approach: sacrifice completeness for accuracy

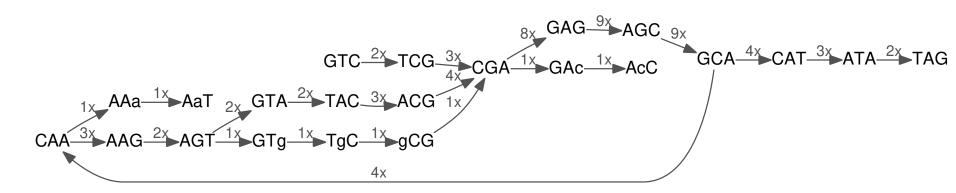
Shortest Common Superstring: Summary


- Unrealistic formulation and difficult problem
- Perhaps theoretical problem can yield some insights into real application?
- Overlap-Layout-Consensus approach motivated by greedy algorithms (join fragments with large overlaps)

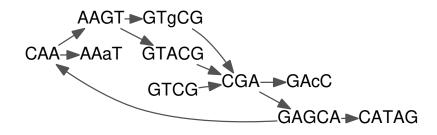
Assembling Short Reads: de Bruijn Graphs

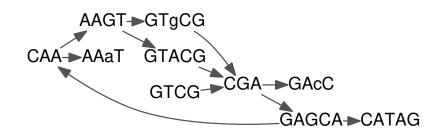
- Split reads to overlapping windows of length \boldsymbol{k}
- **de Bruijn graph** of dimension k is a **directed graph**:
 - vertices: substrings of length k from all reads
 - directed edges: connect k-mers consecutive in at least one of the reads (overlapping by k 1 bases)
- **Example:** k = 2, reads: CCTGCC, GCCAAC

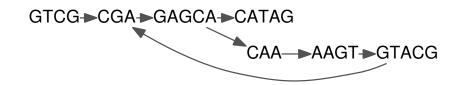

How to use de Bruijn graph for assembly?


- If there was only a single chromosome and there were no ambiguous k-mers, the correct assembly would correspond to a Eulerian path: a path in the graph which uses each edge exactly once
- We can easily test if such a path exists and to find it in O(m+n)
- In general, assembly will correspond to a set of walks in the de Bruijn graph covering most edges

Example: reads and their de Bruijn graph




Example: simplifying de Bruijn graph


Unique paths are contracted to a single vertex

Example: removing errors from de Bruijn graph

Remove tips and bubbles with low coverage

Contract unique paths again \Rightarrow four **contigs** (originally GT<u>CGAGCA</u>AGTA<u>CGAGCA</u>TAG)

GTCG-CGAGCA-CATAG

Typical Results of Assembly

- Many short contigs that can be further combined to longer scaffolds by using pair-end read information
- Some portions cannot be resolved due to **long repetitive sequences**

Example: Human chromosome 14, 88 Mbp, 70× coverage (source: GAGE)

Method	Contigs	Errors	N50 corr
Velvet (basic de Bruijn)	>45000	4910	2.1 kbp
Velvet (with scaffolding)	3565	9156	27 kbp
AllPaths-LG	225	45	4.7 Mbp

N50: contigs with this length or longer contain 50% of the genome here N50 after error correction is shown

Summary

- Sequencing is a complicated process in which bioinformatics plays an important role
- Illumina technology offers extremely low price but only short reads
- Problem of genome assembly, shortest common superstring
- de Bruijn graphs: a practical solution for short reads
- Assembled sequence may contain errors, gaps, multiple contigs
- Next lecture: How to deal with 3rd generation reads?
- Genome coverage and read size are determining factors in how fragmented assembly will be:
 - for Sanger reads: typically $7-10\times$ coverage
 - for NGS reads: typically $40-70\times$ coverage
 - for 3rd generation: $30\times$ coverage

Genome Sequencing Milestones

1976	MS2 (RNA virus) 40 kB
1988	Human genome sequencing project (15 years)
1995	bacterium H. influenzae 2 MB, shotgun (TIGR)
1996	S. cerevisiae 10 MB, BAC-by-BAC (Belgium, UK)
1998	C. elegans 100 MB, BAC-by-BAC (Wellcome Trust)
1998	Celera: human genome in three years!
2000	D. melanogaster 180 MB, shotgun (Celera, Berkeley)
2001	2x human genome 3 GB (NIH, Celera)
after 2001	mouse, rat, chicken, chimpanzee, dog,
2007	Genomes of Watson and Venter (454)
2012	1000 human genomes
soon	10k vertebrate genomes, sequencing as a diagnostic tool
2021	3.5 million SARS-CoV-2 genomes