Substitution models

Askar Gafurov

November 9, 2023

Modelling the evolution of genomes

- The ultimate goal: to model the evolutionary distance between two genomes
 - ▶ Input: sequences $S_1, S_2 \in \{A, C, G, T\}^* = \Sigma^*$, evolutionary time t
 - ▶ Output: $Pr[S_1 \xrightarrow{t} S_2]$ (formal way to denote: $Pr[S_2 \mid S_1, t]$)
 - * Probability of sequence S_1 to mutate into sequence S_2 in evolutionary time t
 - * Formally: Probability of observing sequence S_2 , given that its evolutionary ancestor in time t is sequence S_1
- Requirements:
 - ▶ $Pr[S \stackrel{t=0}{\rightarrow} S] = 1$ (no evolution in zero time)
 - ▶ $\forall S' \in \Sigma^*$: $\Pr[S' \stackrel{t=\infty}{\to} S] = \pi_S$ (with enough time, the starting point is irrelevant)
 - $\blacktriangleright \ \Pr[S_1 \stackrel{t_1}{\to} S_2 \land S_2 \stackrel{t_2}{\to} S_3] = \Pr[S_1 \stackrel{t_1}{\to} S_2] \cdot \Pr[S_2 \stackrel{t_2}{\to} S_3] \text{ (no memory)}$
 - $\mathsf{Pr}[S_1 \overset{t=t_1+t_2}{\to} S_3] = \sum_{S_2 \in \Sigma^*} \mathsf{Pr}[S_1 \overset{t_1}{\to} S_2] \cdot \mathsf{Pr}[S_2 \overset{t_2}{\to} S_3] \; (\mathsf{multiplicativity})$
 - * we can break time t into two parts t_1 and t_2 , and sum over all possible intermediate states

Askar Gafurov Substitution models November 9, 2023 2 / 24

What can we do with such a model (in the near future)

• Given a phylogenetic tree (phylogeny) $T = (\mathbf{S} \subset \Sigma^*, E \subset \mathbf{S}^2, t : E \to \mathbf{R})$ of sequences \mathbf{S} with times $\mathbf{t}(\cdot, \cdot)$ on the edges, we can compute its total probability by multiplying probabilities of each edge:

$$\Pr[\mathbf{S} \mid E, \mathbf{t}] = \Pr[S_{\mathsf{root}}] \cdot \prod_{e: (S_a, S_s) \in E} \Pr[S_a \overset{\mathbf{t}(S_a, S_s)}{\to} S_s]$$

- This allows us to compute the likelihood $\mathcal{L}(E, \mathbf{t}; \mathbf{S})$ of a potential phylogeny T structure E and times \mathbf{t} w.r.t. sequences \mathbf{S} in the nodes
 - ▶ We can choose the best phylogeny structure by maximizing the total likelihood
- We can even maximize the likelihood using only sequences **in the leaves** (present species) by using the Felsenstein algorithm (next week)

Askar Gafurov Substitution models November 9, 2023 3/24

Simplifying assumptions

- No indels, only substitutions
 - $ightharpoonup \implies |S_1| = |S_2| = n$
- All bases mutate independently
 - Compute mutation prob. for each base, and then multiply:

$$\Pr[S_1 = (a_1, \dots, a_n) \xrightarrow{t} S_2 = (b_1, \dots, b_n)] =$$

$$= \Pr[a_1 \xrightarrow{t} b_1] \cdot \Pr[a_2 \xrightarrow{t} b_2] \cdot \dots \cdot \Pr[a_n \xrightarrow{t} b_n] =$$

$$= \prod_{i=1}^{n} \Pr[a_i \xrightarrow{t} b_i].$$

Now, we only need to model the **evolution of a single base** $Pr[a \xrightarrow{t} b]$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- General properties of matrix S(t):
 - $ightharpoonup \Pr[C \xrightarrow{t} G] =$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- General properties of matrix S(t):

 - S(0) =

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- General properties of matrix S(t):

 - $S(0) = I_4$
 - $\triangleright S(t_1) \cdot S(t_2) =$

• $Pr[a \xrightarrow{t} b]$ for a fixed time t has only 16 possible input combinations $\{A, C, G, T\}^2$

• Written as a matrix:
$$S(t) = \begin{pmatrix} \Pr[A \xrightarrow{t} A] & \Pr[A \xrightarrow{t} C] & \Pr[A \xrightarrow{t} G] & \Pr[A \xrightarrow{t} T] \\ \Pr[C \xrightarrow{t} A] & \Pr[C \xrightarrow{t} C] & \Pr[C \xrightarrow{t} G] & \Pr[C \xrightarrow{t} T] \\ \Pr[G \xrightarrow{t} A] & \Pr[G \xrightarrow{t} C] & \Pr[G \xrightarrow{t} G] & \Pr[G \xrightarrow{t} T] \\ \Pr[T \xrightarrow{t} A] & \Pr[T \xrightarrow{t} C] & \Pr[T \xrightarrow{t} G] & \Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- General properties of matrix S(t):
 - $Pr[C \xrightarrow{t} G] = \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} \cdot S(t) \cdot \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix}^{T}$
 - $S(0) = I_4$

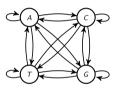
$$S(t_1) \cdot S(t_2) = \left(\sum_{x \in \Sigma} \Pr[i \xrightarrow{t_1} x] \cdot \Pr[x \xrightarrow{t_2} j] \right)_{i,j \in \Sigma} \stackrel{\text{multiplicativity}}{=} \left(\Pr[i \xrightarrow{t_1 + t_2} j] \right)_{i,j \in \Sigma} = S(t_1 + t_2)$$

 $\star S(k \cdot t) = S^k(t)$

Askar Gafurov Substitution models November 9, 2023 5 / 24

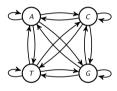
Model with discrete time

- Assume that evolutionary time t is discrete
 - ▶ at most one mutation occurs in time 1
- A base now has 4 possible states, and has a chance to transit between them in each time step, or stay the same ⇒ Markov chain
- S(t) =



Model with discrete time

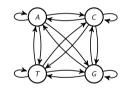
- Assume that evolutionary time t is discrete
 - ▶ at most one mutation occurs in time 1
- A base now has 4 possible states, and has a chance to transit between them in each time step, or stay the same ⇒ Markov chain
- $S(t) = S^t(1) \Longrightarrow$ only need to define S(1)



Model with discrete time

- Assume that evolutionary time t is discrete
 - ▶ at most one mutation occurs in time 1
- A base now has 4 possible states, and has a chance to transit between them in each time step, or stay the same ⇒ Markov chain
- $S(t) = S^t(1) \Longrightarrow$ only need to define S(1)
- Stationary distribution (equilibrium)

$$S(\infty) = \lim_{t \to \infty} S(t) = \lim_{t \to \infty} S^t(1) = \begin{pmatrix} \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \\ \pi_A & \pi_C & \pi_G & \pi_T \end{pmatrix}$$



Quick summary so far

- Evolution model = prob. $\Pr[S_1 \xrightarrow{t} S_2] = \Pr[S_2 \mid S_1, t]$ of observing S_2 given that its ancestor in evolutionary time t is S_1
- Assuming only substitutions
 - $|S_1| = |S_2| = n$
- Assuming independent evolution for each base
 - $ightharpoonup \Pr[S_1 = (a_1, \ldots, a_n) \stackrel{t}{ o} S_2 = (b_1, \ldots, b_n)] = \prod_{i=1}^n \Pr[a_i \stackrel{t}{ o} b_i]$
 - ▶ Only need to define a (substitution) model for a single base

$$Pr[a \xrightarrow{t} b] = S(t) = \begin{pmatrix} Pr[A \xrightarrow{t} A] & Pr[A \xrightarrow{t} C] & Pr[A \xrightarrow{t} G] & Pr[A \xrightarrow{t} T] \\ Pr[C \xrightarrow{t} A] & Pr[C \xrightarrow{t} C] & Pr[C \xrightarrow{t} G] & Pr[C \xrightarrow{t} T] \\ Pr[G \xrightarrow{t} A] & Pr[G \xrightarrow{t} C] & Pr[G \xrightarrow{t} G] & Pr[G \xrightarrow{t} T] \\ Pr[T \xrightarrow{t} A] & Pr[T \xrightarrow{t} C] & Pr[T \xrightarrow{t} G] & Pr[T \xrightarrow{t} T] \end{pmatrix}$$

- $S(t_1 + t_2) = S(t_1) \cdot S(t_2)$
- For discrete time, only need to define S(1)
 - ▶ Classic Markov chain with states $\{A, C, G, T\}$, S(1) = matrix of transition probabilities

Jukes-Cantor JC69 model

• The plan: define Markov chains with continuous time (CTMC), where all substitutions are equally likely

$$\triangleright$$
 $S(t) =$

Jukes-Cantor JC69 model

• The plan: define Markov chains with continuous time (CTMC), where all substitutions are equally likely

$$S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix} = I + \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \cdot s(t)$$

Jukes-Cantor JC69 model

 The plan: define Markov chains with continuous time (CTMC), where all substitutions are equally likely

$$S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix} = I + \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \cdot s(t)$$

- Let's look at s(t) closely
 - s(0) = 0
 - Let's denote the first derivative of s(t) at zero as α :

$$\star \ \, \mathsf{Formally,} \, \, \alpha := s'(0) \stackrel{\mathsf{def.}}{=} \lim_{\varepsilon \to 0} \frac{s(0+\varepsilon) - s(0)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{s(\varepsilon)}{\varepsilon}$$

$$\star \alpha = \left. \frac{\partial \Pr[a \xrightarrow{t} b]}{\partial t} \right|_{t=0}$$

Derivative of S(t)

$$S'(t) \stackrel{\text{def.}}{=} \lim_{\varepsilon \to 0} \frac{S(t+\varepsilon) - S(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)}{\varepsilon} =$$

$$S(t) \cdot \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \cdot s(\varepsilon)$$

$$= \lim_{\varepsilon \to 0} \frac{S(t)(S(\varepsilon) - I)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(t)S(\varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{S(t)S(\varepsilon) - S(\varepsilon)$$

Differential equation

- We've got diff. equation $S'(t) = S(t) \cdot R$, where $R = \begin{pmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{pmatrix}$
- R is called transition rate matrix
- It is really a system of 16 ordinary differential equations $S'(t)_{a,b} = (S(t) \cdot R)_{a,b}$
 - ► for (A, A): $-3s'(t) = (1 3s(t))(-3\alpha) + 3s(t)\alpha = -3\alpha + 12\alpha s(t)$ ★ $s'(t) = \alpha 4\alpha s(t)$
 - for (A, C): $s'(t) = (1 3s(t))\alpha + s(t)(-3\alpha) + 2s(t)\alpha = \alpha 4\alpha s(t)$
 - which reduces to a single ordinary differential equation $s'(t) = \alpha 4\alpha s(t)$ with start condition s(0) = 0
- Solution: $s(t) = \frac{1}{4} \frac{1}{4}e^{-4\alpha t}; \quad 1 3s(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t}$

$$\frac{ds}{dt} = \alpha - 4\alpha s$$

$$\frac{ds}{\alpha - 4\alpha s} = dt$$

$$\frac{1}{\alpha} \int \frac{ds}{1 - 4s} = \int 1 dt$$

$$|(1 - 4s) = x, -4ds = dx|$$

$$\frac{1}{-4\alpha} \int \frac{dx}{x} = \int 1 dt$$

$$\frac{1}{-4\alpha} \ln(1 - 4s) = t + C$$

$$1 - 4s = e^{-4\alpha t + C}$$

$$s = \frac{1 - e^{-4\alpha t + C}}{4}$$

$$s(0) = 0 \Longrightarrow \frac{1 - e^{C}}{4} = 0 \Longrightarrow C = 0$$
Solution: $s(t) = \frac{1 - e^{-4\alpha t}}{4}; 1 - 3s(t) = \frac{1}{4} + \frac{3}{4}e^{-4\alpha t}$

11 / 24

Askar Gafurov Substitution models November 9, 2023

Equilibrium for Jukes-Cantor model

$$\lim_{t \to \infty} \Pr[A \xrightarrow{t} A] = \lim_{t \to \infty} \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} = \frac{1}{4}$$
$$\lim_{t \to \infty} \Pr[A \xrightarrow{t} C] = \lim_{t \to \infty} \frac{1}{4} - \frac{1}{4}e^{-4\alpha t} = \frac{1}{4}$$

$$S(\infty) = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix}$$

Quick summary so far

- Jukes-Cantor substitution model:
 - ► Continuous time t
 - ▶ Equal probability of substitution $\forall a \neq b : \Pr[a \xrightarrow{t} b] = s(t)$
 - Matrix form

$$S(t) = \begin{pmatrix} 1 - 3s(t) & s(t) & s(t) & s(t) \\ s(t) & 1 - 3s(t) & s(t) & s(t) \\ s(t) & s(t) & 1 - 3s(t) & s(t) \\ s(t) & s(t) & s(t) & 1 - 3s(t) \end{pmatrix}$$

- Diff. equation s'(t) = 1 3s(t), s(0) = 0
- $Pr[a \xrightarrow{t} b] = S_{JC}(t)_{a,b} = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4\alpha t} & a = b \\ \frac{1}{4} \frac{1}{4}e^{-4\alpha t} & a \neq b \end{cases}$
- Equilibrium for JC: $\pi_A = \pi_C = \pi_G = \pi_T = \frac{1}{4}$

Example for Jukes-Cantor

- Input: $S_1 = TAACCGT$, $S_2 = AATGCGT$, evolutionary time t = 0.5, $\alpha = 3$
- Result:

$$\Pr[S_1 \xrightarrow{t} S_2] = \prod_{i=1}^n \Pr[a_i \xrightarrow{t} b_i] = \left(\frac{1}{4} + \frac{3}{4}e^{-4\alpha t}\right)^{\#(a_i = b_i)} \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-4\alpha t}\right)^{\#(a_i \neq b_i)} =$$

$$= \left(\frac{1}{4} + \frac{3}{4}e^{-6}\right)^4 \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-6}\right)^3 \approx (0.2519)^4 \cdot (0.2493)^3 \approx 0.0000624$$

Askar Gafurov Substitution models November 9, 2023 14 / 24

Example for Jukes-Cantor

- Input: $S_1 = TAACCGT$, $S_2 = AATGCGT$, evolutionary time t = 0.5, $\alpha = 3$
- Result:

$$\Pr[S_1 \xrightarrow{t} S_2] = \prod_{i=1}^n \Pr[a_i \xrightarrow{t} b_i] = \left(\frac{1}{4} + \frac{3}{4}e^{-4\alpha t}\right)^{\#(a_i = b_i)} \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-4\alpha t}\right)^{\#(a_i \neq b_i)} =$$

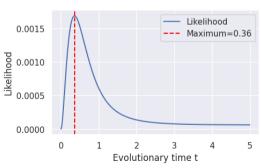
$$= \left(\frac{1}{4} + \frac{3}{4}e^{-6}\right)^4 \cdot \left(\frac{1}{4} - \frac{1}{4}e^{-6}\right)^3 \approx (0.2519)^4 \cdot (0.2493)^3 \approx 0.0000624$$

- Notice that parameters $t = 30, \alpha = 1/20$ would give the same result
 - ightharpoonup Because t and α are always in a product
 - ▶ Standard practice is to select α such that E[# mutations in time t=1]=1
 - * # mutations in time $t = 1 \sim Poisson(\lambda = 3\alpha)$, $E = 3\alpha$, E[#] = 1 when $\alpha = 1/3$

14 / 24 Askar Gafurov Substitution models November 9, 2023

Estimation of evolutionary time in JC model

- Input: $S_1 = TAACCGT$, $S_2 = AATGCGT$, $\alpha = 1/3$ (standard)
- Goal: find the best evolutionary time t^*
- Best = with highest likelihood
 - ▶ likelihood $\mathcal{L}(t; S_1, S_2, \alpha) = \Pr[S_1 \xrightarrow{t} S_2 \mid \alpha] = \left(\frac{1}{4} + \frac{3}{4}e^{-4\alpha t}\right)^{\#(a_i = b_i)} \cdot \left(\frac{1}{4} \frac{1}{4}e^{-4\alpha t}\right)^{\#(a_i \neq b_i)}$.
 - $t^* = \underset{t \geq 0}{\operatorname{arg\,max}} \ \mathcal{L}(t; S_1, S_2, \alpha) = -\frac{1}{4\alpha} \ln \left(1 \frac{4}{3}d\right)$, where d := proportion of different positions



Exact estimator of evolutionary time in JC model

$$t^* = \underset{t \geq 0}{\text{arg max}} \ \mathcal{L}(t; S_1, S_2, \alpha) = \underset{t \geq 0}{\text{arg max}} \ \log \mathcal{L}(t; S_1, S_2, \alpha) =$$

$$= \underset{t \geq 0}{\text{arg max}} \ \#(a_i = b_i) \log (1 - 3s(t)) + \#(a_i \neq b_i) \log s(t).$$

$$\frac{df}{ds} = -\frac{3\#(a_i = b_i)}{1 - 3s} + \frac{\#(a_i \neq b_i)}{s} = \frac{(1 - 3s)\#(\neq) - 3s\#(=)}{s(1 - 3s)}.$$

$$\frac{ds}{dt} = \alpha \cdot e^{-4\alpha t}.$$

$$\frac{df}{dt} = 0 \Longrightarrow \frac{df}{ds} \frac{ds}{dt} = 0 \Longrightarrow \frac{df}{ds} = 0 \Longrightarrow \frac{(1 - 3s)\#(\neq) - 3s\#(=)}{s(1 - 3s)} = 0 \Longrightarrow$$

$$\Longrightarrow (1 - 3s)\#(\neq) - 3s\#(=) = 0 \Longrightarrow s = \frac{\#(\neq)}{3 \cdot (\#(\neq) + \#(=))} = \frac{\#(\neq)}{3n}.$$

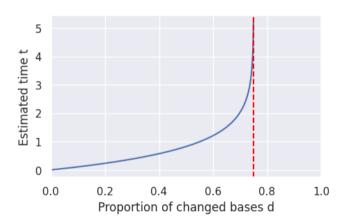
$$\frac{1}{4} - \frac{1}{4}e^{-4\alpha t} = \frac{\#(\neq)}{3n} \Longrightarrow -4\alpha t = \ln\left(1 - \frac{4\#(\neq)}{3n}\right) \Longrightarrow$$

$$\Longrightarrow t = \frac{-\ln\left(1 - \frac{4}{3}\frac{\#(\neq)}{n}\right)}{a^{\frac{1}{2}}} = \frac{-\ln\left(1 - \frac{4}{3}\frac{d}{n}\right)}{a^{\frac{1}{2}}}.$$

Askar Gafurov Substitution models November 9, 2023

Behaviour of the time estimator

$$t^* = -rac{1}{4lpha}\ln\left(1-rac{4}{3}\cdot d
ight)$$



Askar Gafurov Substitution models November 9, 2023 17 / 24

More general models

- JC69 model: rate matrix $R_{JC69} = \begin{pmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{pmatrix}$
- Sum in a row must equal to 0
- $R_{a,b} := \frac{\partial \Pr[a \xrightarrow{\tau} b]}{\partial t}$ speed of change from a to b

• In general:
$$R = \begin{pmatrix} * & \mu_{A,C} & \mu_{A,G} & \mu_{A,T} \\ \mu_{C,A} & * & \mu_{C,G} & \mu_{C,T} \\ \mu_{G,A} & \mu_{G,C} & * & \mu_{G,T} \\ \mu_{T,A} & \mu_{T,C} & \mu_{T,G} & * \end{pmatrix}$$

- ▶ Diagonal is set to make row sum up to 0
- ► Some regularity conditions apply

Solution to a general model

- The differential equation $S'(t) = S(t) \cdot R$ holds for any rate matrix R
- The general solution is $S(t) = e^{Rt}$
- How to compute e^{Rt} ?
 - ▶ diagonalization of matrix $R = Q \cdot \Lambda \cdot Q^{-1}$, where
 - \star Q = orthogonal matrix (of eigenvectors)
 - ★ $\Lambda = diag(\lambda_1, ..., \lambda_4)$ is a diagonal matrix (of eigenvalues)
 - $R^n = (Q \cdot \Lambda \cdot Q^{-1})^n = Q \Lambda Q^{-1} Q \Lambda Q^{-1} Q \dots Q^{-1} Q \Lambda Q^{-1} = Q \Lambda^n Q^{-1} = Q \Lambda^n$

$$\begin{split} e^{Rt} &= \sum_{i=0}^{\infty} \frac{(Rt)^n}{n!} = \sum_{i=0}^n \frac{Q \cdot \mathsf{diag}((\lambda_1 t)^n, \dots, (\lambda_4 t)^n) \cdot Q^{-1}}{n!} = \\ &= Q \cdot \mathsf{diag}\left(\sum_{i=0}^{\infty} \frac{(\lambda_1 t)^n}{n!}, \dots, \sum_{i=0}^{\infty} \frac{(\lambda_1 t)^n}{n!}\right) \cdot Q^{-1} = Q \cdot \mathsf{diag}\left(e^{\lambda_1 t}, \dots, e^{\lambda_4 t}\right) \cdot Q^{-1} \end{split}$$

Solution in general form

$$\frac{dS}{dt} = SR \Longrightarrow \int \frac{dS}{S} = \int Rdt \Longrightarrow \ln S = Rt + C \Longrightarrow S = e^{Rt + C}; S(0) = I \Longrightarrow S(t) = e^{Rt}$$

$$R_{JC69} = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \cdot \operatorname{diag}(-4\alpha, -4\alpha, -4\alpha, 0) \cdot \begin{pmatrix} -0.25 & -0.25 & -0.25 & 0.75 \\ -0.25 & -0.25 & 0.75 & 0.25 \\ -0.25 & 0.75 & -0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{pmatrix}$$

$$S_{JC69}(t) = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \cdot \operatorname{diag} \left(e^{-4\alpha t}, e^{-4\alpha t}, e^{-4\alpha t}, e^{-4\alpha t}, 1 \right) \cdot \begin{pmatrix} -0.25 & -0.25 & -0.25 & 0.75 \\ -0.25 & -0.25 & 0.75 & 0.25 \\ -0.25 & 0.75 & -0.25 & -0.25 \end{pmatrix}$$

Askar Gafurov Substitution models November 9, 2023 20 / 24

Kimura's K80 model

- Also called Kimura's 2 parameter model (K2P)
- A and G are purines, C and T are pyrimidines
 - ▶ Transitions: within the same group $A \longleftrightarrow G$, $C \longleftrightarrow T$
 - ► Transversions: between the groups
- Transitions are more frequent than transversions
 - $kop \kappa := rac{ ext{rate of transitions}}{ ext{rate of transversions}}, ext{ set rate of transversions to } 1$

$$\bullet \ R_{K80} = \begin{pmatrix} * & 1 & \kappa & 1 \\ 1 & * & 1 & \kappa \\ \kappa & 1 & * & 1 \\ 1 & \kappa & 1 & * \end{pmatrix}$$

• Equilibrium is still $\pi_A = \pi_C = \pi_G = \pi_T = 25\%$

Hasewaga-Kishino-Yano HKY85 model

• Transition/transversion ratio κ & arbitrary equilibrium $(\pi_A, \pi_C, \pi_G, \pi_T)$

$$\bullet \ R_{HKY85} = \begin{pmatrix} * & \pi_C & \kappa \cdot \pi_G & \pi_T \\ \pi_A & * & \pi_G & \kappa \cdot \pi_T \\ \kappa \cdot \pi_A & \pi_C & * & \pi_T \\ \pi_A & \kappa \cdot \pi_C & \pi_G & * \end{pmatrix}$$

Other models

- Kimura's 3 parameter model (K3P, K81)
 - ▶ 1 transition rate + 2 transversion rates
 - admits Hadamard transformation (generalized Fourier)
- Felsenstein F81 model
 - ► JC69 + arbitrary equilibrium
- Tamura T92 model
 - ► K80 + GC content
- Tamura and Nay TN93 model
 - ▶ 2 transition rates + 1 transversion rate
- Tavaré GTR86 model (General Time Reversible)
 - everything from the above: arbitrary equilibrium + 6 rate parameters

Summary

- Evolution model: $\Pr[S_1 \stackrel{t}{\to} S_2]$
 - ▶ Independent base evolution $\Longrightarrow \Pr[S_1 \xrightarrow{t} S_2] = \prod_{i=1}^n \Pr[a_i \xrightarrow{t} b_i]$
 - ightharpoonup Continuous time $t + \text{Only substitutions} \Longrightarrow \text{Continuous time Markov chains (CTMC)}$
- Substitution model for one base (CTMC)
 - substitution rate matrix $R = \begin{pmatrix} * & \mu_{A,C} & \mu_{A,G} & \mu_{A,T} \\ \mu_{C,A} & * & \mu_{C,G} & \mu_{C,T} \\ \mu_{G,A} & \mu_{G,C} & * & \mu_{G,T} \\ \mu_{T,A} & \mu_{T,C} & \mu_{T,G} & * \end{pmatrix}$, rows sum up to zero
 - $S_{a,b}(t) = \Pr[a \xrightarrow{t} b]$ from $S(t) = e^{Rt}$ using diagonalization trick
- Different rate matrices R give different models:
 - ▶ JC69 model: all substitutions are equally likely, equilibrium 25%
 - ▶ K80 model: transition/transversion ratio κ , equlibrium 25%
 - ► HKY85 model: K80 + arbitrary equilibrium