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Modelling the evolution of genomes

The ultimate goal: to model the evolutionary distance between two genomes
▶ Input: sequences S1,S2 ∈ {A,C ,G ,T}∗ = Σ∗, evolutionary time t

▶ Output: Pr[S1
t→ S2] (formal way to denote: Pr[S2 | S1, t])

⋆ Probability of sequence S1 to mutate into sequence S2 in evolutionary time t
⋆ Formally: Probability of observing sequence S2, given that its evolutionary ancestor in time t is

sequence S1

Requirements:

▶ Pr[S
t=0→ S ] = 1 (no evolution in zero time)

▶ ∀S ′ ∈ Σ∗ : Pr[S ′ t=∞→ S ] = πS (with enough time, the starting point is irrelevant)

▶ Pr[S1
t1→ S2 ∧ S2

t2→ S3] = Pr[S1
t1→ S2] · Pr[S2

t2→ S3] (no memory)

▶ Pr[S1
t=t1+t2→ S3] =

∑
S2∈Σ∗

Pr[S1
t1→ S2] · Pr[S2

t2→ S3] (multiplicativity)

⋆ we can break time t into two parts t1 and t2, and sum over all possible intermediate states
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What can we do with such a model (in the near future)

Given a phylogenetic tree (phylogeny) T = (S ⊂ Σ∗,E ⊂ S2, t : E → R) of sequences S
with times t(·, ·) on the edges, we can compute its total probability by multiplying
probabilities of each edge:

Pr[S | E , t] = Pr[Sroot] ·
∏

e:(Sa,Ss)∈E

Pr[Sa
t(Sa,Ss)→ Ss ]

This allows us to compute the likelihood L(E , t;S) of a potential phylogeny T structure
E and times t w.r.t. sequences S in the nodes

▶ We can choose the best phylogeny structure by maximizing the total likelihood

We can even maximize the likelihood using only sequences in the leaves (present
species) by using the Felsenstein algorithm (next week)
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Simplifying assumptions

No indels, only substitutions
▶ =⇒ |S1| = |S2| = n

All bases mutate independently
▶ Compute mutation prob. for each base, and then multiply:

Pr[S1 = (a1, . . . , an)
t→ S2 = (b1, . . . , bn)] =

= Pr[a1
t→ b1] · Pr[a2

t→ b2] · . . . · Pr[an
t→ bn] =

=
n∏

i=1

Pr[ai
t→ bi ].

▶ Now, we only need to model the evolution of a single base Pr[a
t→ b]
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Substitution model for one base

Pr[a
t→ b] for a fixed time t has only 16 possible input combinations {A,C ,G ,T}2

Written as a matrix: S(t) =


Pr[A

t→ A] Pr[A
t→ C ] Pr[A

t→ G ] Pr[A
t→ T ]

Pr[C
t→ A] Pr[C

t→ C ] Pr[C
t→ G ] Pr[C

t→ T ]

Pr[G
t→ A] Pr[G

t→ C ] Pr[G
t→ G ] Pr[G

t→ T ]

Pr[T
t→ A] Pr[T

t→ C ] Pr[T
t→ G ] Pr[T

t→ T ]


General properties of matrix S(t):

▶ Pr[C
t→ G ] =

(
0 1 0 0

)
· S(t) ·

(
0 0 1 0

)T
▶ S(0) = I4

▶ S(t1) · S(t2) =

(∑
x∈Σ

Pr[i
t1→ x ] · Pr[x t2→ j ]

)
i,j∈Σ

multiplicativity
=

(
Pr[i

t1+t2→ j ]
)
i,j∈Σ

= S(t1 + t2)

⋆ S(k · t) = Sk(t)
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Model with discrete time

Assume that evolutionary time t is discrete
▶ at most one mutation occurs in time 1

A base now has 4 possible states, and has a chance to transit between
them in each time step, or stay the same =⇒ Markov chain

S(t) =

A C

GT
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Stationary distribution (equilibrium)

S(∞) = limt→∞ S(t) = limt→∞ S t(1) =


πA πC πG πT
πA πC πG πT
πA πC πG πT
πA πC πG πT
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A C

GT
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Quick summary so far

Evolution model = prob. Pr[S1
t→ S2] = Pr[S2 | S1, t] of observing S2 given that its

ancestor in evolutionary time t is S1
Assuming only substitutions

▶ |S1| = |S2| = n

Assuming independent evolution for each base

▶ Pr[S1 = (a1, . . . , an)
t→ S2 = (b1, . . . , bn)] =

∏n
i=1 Pr[ai

t→ bi ]
▶ Only need to define a (substitution) model for a single base

▶ Pr[a
t→ b] = S(t) =


Pr[A

t→ A] Pr[A
t→ C ] Pr[A

t→ G ] Pr[A
t→ T ]

Pr[C
t→ A] Pr[C

t→ C ] Pr[C
t→ G ] Pr[C

t→ T ]

Pr[G
t→ A] Pr[G

t→ C ] Pr[G
t→ G ] Pr[G

t→ T ]

Pr[T
t→ A] Pr[T

t→ C ] Pr[T
t→ G ] Pr[T

t→ T ]


▶ S(t1 + t2) = S(t1) · S(t2)

For discrete time, only need to define S(1)
▶ Classic Markov chain with states {A,C ,G ,T}, S(1) = matrix of transition probabilities
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Jukes-Cantor JC69 model

The plan: define Markov chains with continuous time (CTMC), where all substitutions
are equally likely

▶ S(t) =


1− 3s(t) s(t) s(t) s(t)

s(t) 1− 3s(t) s(t) s(t)
s(t) s(t) 1− 3s(t) s(t)
s(t) s(t) s(t) 1− 3s(t)

 = I +


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 · s(t)
Let’s look at s(t) closely

▶ s(0) = 0
▶ Let’s denote the first derivative of s(t) at zero as α:

⋆ Formally, α := s ′(0)
def.
= lim

ε→0

s(0 + ε)− s(0)

ε
= lim

ε→0

s(ε)

ε

⋆ α =
∂ Pr[a

t→ b]

∂t

∣∣∣∣∣
t=0
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Derivative of S(t)

S ′(t)
def.
= lim

ε→0

S(t + ε)− S(t)

ε
= lim

ε→0

S(t)S(ε)− S(t)

ε
=

= lim
ε→0

S(t)(S(ε)− I )

ε
= lim

ε→0

S(t) ·


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 · s(ε)

ε
=

= S(t) ·


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 · lim
ε→0

s(ε)

ε
=

= S(t) ·


−3α α α α
α −3α α α
α α −3α α
α α α −3α


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Differential equation

We’ve got diff. equation S ′(t) = S(t) · R, where R =


−3α α α α
α −3α α α
α α −3α α
α α α −3α


R is called transition rate matrix

It is really a system of 16 ordinary differential equations S ′(t)a,b = (S(t) · R)a,b
▶ for (A,A): −3s ′(t) = (1− 3s(t))(−3α) + 3s(t)α = −3α+ 12αs(t)

⋆ s ′(t) = α− 4αs(t)

▶ for (A,C ): s ′(t) = (1− 3s(t))α+ s(t)(−3α) + 2s(t)α = α− 4αs(t)
▶ which reduces to a single ordinary differential equation s ′(t) = α− 4αs(t) with start

condition s(0) = 0

Solution: s(t) =
1

4
− 1

4
e−4αt ; 1− 3s(t) =

1

4
+

3

4
e−4αt
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ds

dt
= α− 4αs

ds

α− 4αs
= dt

1

α

∫
ds

1− 4s
=

∫
1dt

|(1− 4s) = x ,−4ds = dx |
1

−4α

∫
dx

x
=

∫
1dt

1

−4α
ln(1− 4s) = t + C

1− 4s = e−4αt+C

s =
1− e−4αt+C

4

s(0) = 0 =⇒ 1− eC

4
= 0 =⇒ C = 0

Solution: s(t) =
1− e−4αt

4
; 1− 3s(t) =

1

4
+

3

4
e−4αt
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Equilibrium for Jukes-Cantor model

lim
t→∞

Pr[A
t→ A] = lim

t→∞

1

4
+

3

4
e−4αt =

1

4

lim
t→∞

Pr[A
t→ C ] = lim

t→∞

1

4
− 1

4
e−4αt =

1

4

S(∞) =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


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Quick summary so far

Jukes-Cantor substitution model:
▶ Continuous time t
▶ Equal probability of substitution ∀a ̸= b : Pr[a

t→ b] = s(t)
▶ Matrix form

S(t) =


1− 3s(t) s(t) s(t) s(t)

s(t) 1− 3s(t) s(t) s(t)
s(t) s(t) 1− 3s(t) s(t)
s(t) s(t) s(t) 1− 3s(t)


Diff. equation s ′(t) = 1− 3s(t), s(0) = 0

Pr [a
t→ b] = SJC (t)a,b =

{
1
4 + 3

4e
−4αt a = b

1
4 −

1
4e

−4αt a ̸= b

Equilibrium for JC: πA = πC = πG = πT = 1
4

Askar Gafurov Substitution models November 9, 2023 13 / 24



Example for Jukes-Cantor

Input: S1 = TAACCGT , S2 = AATGCGT , evolutionary time t = 0.5, α = 3

Result:

Pr[S1
t→ S2] =

n∏
i=1

Pr[ai
t→ bi ] =

(
1

4
+

3

4
e−4αt

)#(ai=bi )

·
(
1

4
− 1

4
e−4αt

)#(ai ̸=bi )

=

=

(
1

4
+

3

4
e−6

)4

·
(
1

4
− 1

4
e−6

)3

≈ (0.2519)4 · (0.2493)3 ≈ 0.0000624

Notice that parameters t = 30, α = 1/20 would give the same result
▶ Because t and α are always in a product
▶ Standard practice is to select α such that E [# mutations in time t = 1] = 1

⋆ # mutations in time t = 1 ∼ Poisson (λ = 3α), E = 3α, E [#] = 1 when α = 1/3
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Estimation of evolutionary time in JC model

Input: S1 = TAACCGT , S2 = AATGCGT , α = 1/3 (standard)

Goal: find the best evolutionary time t∗

Best = with highest likelihood

▶ likelihood L(t;S1,S2, α) = Pr[S1
t→ S2 | α] =

(
1
4 + 3

4e
−4αt

)#(ai=bi ) ·
(
1
4 −

1
4e

−4αt
)#(ai ̸=bi ).

▶ t∗ = argmax
t≥0

L(t;S1,S2, α) = − 1
4α ln

(
1− 4

3d
)
, where d := proportion of different positions
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Exact estimator of evolutionary time in JC model

t∗ = argmax
t≥0

L(t; S1, S2, α) = argmax
t≥0

logL(t; S1, S2, α) =

= argmax
t≥0

#(ai = bi ) log (1− 3s(t)) + #(ai ̸= bi ) log s(t).

df

ds
= −3#(ai = bi )

1− 3s
+

#(ai ̸= bi )

s
=

(1− 3s)#(̸=)− 3s#(=)

s(1− 3s)
.

ds

dt
= α · e−4αt .

df

dt
= 0 =⇒ df

ds

ds

dt
= 0 =⇒ df

ds
= 0 =⇒ (1− 3s)#(̸=)− 3s#(=)

s(1− 3s)
= 0 =⇒

=⇒ (1− 3s)#(̸=)− 3s#(=) = 0 =⇒ s =
#(̸=)

3 · (#(̸=) + #(=))
=

#(̸=)

3n
.

1

4
− 1

4
e−4αt =

#(̸=)

3n
=⇒ −4αt = ln

(
1− 4#(̸=)

3n

)
=⇒

=⇒ t =

− ln

(
1− 4

3

#(̸=)

n

)
4α

=
− ln

(
1− 4

3
d
)

4α
.

Askar Gafurov Substitution models November 9, 2023 16 / 24



Behaviour of the time estimator

t∗ = − 1

4α
ln

(
1− 4

3
· d
)
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More general models

JC69 model: rate matrix RJC69 =


−3α α α α
α −3α α α
α α −3α α
α α α −3α


Sum in a row must equal to 0

Ra,b :=
∂ Pr[a

t→ b]

∂t
speed of change from a to b

In general: R =


∗ µA,C µA,G µA,T

µC ,A ∗ µC ,G µC ,T

µG ,A µG ,C ∗ µG ,T

µT ,A µT ,C µT ,G ∗


▶ Diagonal is set to make row sum up to 0
▶ Some regularity conditions apply

Askar Gafurov Substitution models November 9, 2023 18 / 24



Solution to a general model

The differential equation S ′(t) = S(t) · R holds for any rate matrix R

The general solution is S(t) = eRt

How to compute eRt?
▶ diagonalization of matrix R = Q · Λ · Q−1, where

⋆ Q = orthogonal matrix (of eigenvectors)
⋆ Λ = diag(λ1, . . . , λ4) is a diagonal matrix (of eigenvalues)

▶ Rn = (Q · Λ · Q−1)n = QΛQ−1QΛQ−1Q . . .Q−1QΛQ−1 = QΛnQ−1 =
Q · diag(λn

1, . . . , λ
n
4) · Q−1

eRt =
∞∑
i=0

(Rt)n

n!
=

n∑
i=0

Q · diag((λ1t)
n, . . . , (λ4t)

n) · Q−1

n!
=

= Q · diag

( ∞∑
i=0

(λ1t)
n

n!
, . . . ,

∞∑
i=0

(λ1t)
n

n!

)
· Q−1 = Q · diag

(
eλ1t , . . . , eλ4t

)
· Q−1
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Solution in general form

dS

dt
= SR =⇒

∫
dS

S
=

∫
Rdt =⇒ lnS = Rt + C =⇒ S = eRt+C ; S(0) = I =⇒ S(t) = eRt

RJC69 =


−1 −1 −1 1
0 0 1 1
0 1 0 1
1 0 0 1

 · diag(−4α,−4α,−4α, 0) ·


−0.25 −0.25 −0.25 0.75
−0.25 −0.25 0.75 0.25
−0.25 0.75 −0.25 −0.25
0.25 0.25 0.25 0.25



SJC69(t) =


−1 −1 −1 1
0 0 1 1
0 1 0 1
1 0 0 1

 · diag
(
e−4αt , e−4αt , e−4αt , 1

)
·


−0.25 −0.25 −0.25 0.75
−0.25 −0.25 0.75 0.25
−0.25 0.75 −0.25 −0.25
0.25 0.25 0.25 0.25


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Kimura’s K80 model

Also called Kimura’s 2 parameter model (K2P)

A and G are purines, C and T are pyrimidines
▶ Transitions: within the same group A←→ G , C ←→ T
▶ Transversions: between the groups

Transitions are more frequent than transversions

▶ κ :=
rate of transitions

rate of transversions
, set rate of transversions to 1

RK80 =


∗ 1 κ 1
1 ∗ 1 κ
κ 1 ∗ 1
1 κ 1 ∗


Equilibrium is still πA = πC = πG = πT = 25%
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Hasewaga-Kishino-Yano HKY85 model

Transition/transversion ratio κ & arbitrary equilibrium (πA, πC , πG , πT )

RHKY 85 =


∗ πC κ·πG πT
πA ∗ πG κ·πT
κ·πA πC ∗ πT
πA κ·πC πG ∗


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Other models

Kimura’s 3 parameter model (K3P, K81)
▶ 1 transition rate + 2 transversion rates
▶ admits Hadamard transformation (generalized Fourier)

Felsenstein F81 model
▶ JC69 + arbitrary equilibrium

Tamura T92 model
▶ K80 + GC content

Tamura and Nay TN93 model
▶ 2 transition rates + 1 transversion rate

Tavaré GTR86 model (General Time Reversible)
▶ everything from the above: arbitrary equilibrium + 6 rate

parameters
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Summary

Evolution model: Pr[S1
t→ S2]

▶ Independent base evolution =⇒ Pr[S1
t→ S2] =

∏n
i=1 Pr[ai

t→ bi ]
▶ Continuous time t + Only substitutions =⇒ Continuous time Markov chains (CTMC)

Substitution model for one base (CTMC)

▶ substitution rate matrix R =


∗ µA,C µA,G µA,T

µC ,A ∗ µC ,G µC ,T

µG ,A µG ,C ∗ µG ,T

µT ,A µT ,C µT ,G ∗

, rows sum up to zero

▶ Sa,b(t) = Pr[a
t→ b] from S(t) = eRt using diagonalization trick

Different rate matrices R give different models:
▶ JC69 model: all substitutions are equally likely, equilibrium 25%
▶ K80 model: transition/transversion ratio κ, equlibrium 25%
▶ HKY85 model: K80 + arbitrary equilibrium

Askar Gafurov Substitution models November 9, 2023 24 / 24


	Introduction, discrete time
	Jukes-Cantor model
	Extended models

