Announcements

- Today last lecture, afterwards tutorial for biologists
- Next Thursday Dec.16.:
 - last tutorial for comp.sci.
 - optional presentations of journal club during lecture time (interest?)
 - tutorial for biologists possibly cancelled
- End of semester deadlines
 - journal club reports Friday Dec. 17
 - HW3 Tuesday Dec. 21

Exam (comp.sci. only)

The main part is written:

- You need at least 50% of points
- Time 3 hours
- About 50% of points for simple questions,
 - examples will be on the course website
 - in case of interest tutorial session before exam
- The rest of the questions mostly designing/modifying an algorithm or model

• Date?

- Online or in person, depending on circumstances
- You can use pen, simple calculator and a cheat sheet up to 2 A4 two-sided sheets

Written exam, online version (comp.sci. only)

- Exam questions and submission in Moodle
- MS teams: annoucements, questions
- Write in an editor, create pdf or write on paper, scan/photo, convert to pdf
- Allowed aids:

Same as in person (incl. cheat sheet) Text and image editors, software for digitization of handwritten pages MS Teams to communicate with instructors Moodle for getting and submitting exam

• Not allowed:

Communication with other persons except instructors

Other webpages

Other software (e.g. specialized bioinformatics programs, compilers)

Oral exam

- Only for online exam
- Videocall in MS Teams
- After written exam, time slots over several days
- We will discuss your exam
- You should be able to explain your answers in detail
- Oral exam influences exam grade
- If you are unable to explain your answers, you will get Fx

"Second chance" exam: the same for as the first or oral-only the dates arranged with those who need them

Population Genetics

Broña Brejová December 9, 2021

Population genetics

- Genomes of different individuals of the same species differ
- These differences cause differences in phenotype (appearance, behaviour, diseases,...)
- We can sequence multiple individuals and compare with reference sequence

Possible applications:

- Impact of individual genetic differences
- History and structure of populations (subpopulations, migration, historical changes in size)

SNPs (Single Nucleotide Polymorphisms)

- SNP: a single base mutation (present in > 1% individuals)
- Usually only two forms : major and minor allele
- Small change at some places in the genome can cause large phenotypic changes

Systematic mapping of SNPs:

1000 Genomes Project 2008-2015 identify 95% of SNPs with 1% minor allele frequency using next generation genome sequencing

Trait/Disease Association Mapping

- Traits and diseases emerge by the combination of genetic and environmental influences
- Goal: Identify genetic influences.
 - Disease mechanisms?
 - What is the risk of inheritance?
 - How can we design and target new drugs (pharmacogenomics)?
 E.g. mutations of cytochrome family P450 genes influence metabolism of drugs in the liver, thus influence necessary dose

Diploid genomes

- Human has a diploid genome: each human cell contains two copies of chromosomes 1...22 plus sex chromosomes X,X or X,Y
- From each pair, one chromosome comes from mother and one from father
- For a SNP with alleles (forms) a and A, an individual is homozygote (aa or AA), or heterozygote (aA)
- A disease caused by allele *a* can appear only in homozygotes *aa*, or also in heterozygotes *aA*, or more severe for *aa* than *aA*

Diploid genomes

- Human has a diploid genome: each human cell contains two copies of chromosomes 1...22 plus sex chromosomes X,X or X,Y
- From each pair, one chromosome comes from mother and one from father
- For a SNP with alleles (forms) a and A, an individual is homozygote (aa or AA), or heterozygote (aA)
- Haplotype: combination of alleles of different SNPs on the same chromosome (inherited from one parent)
 Diploid individual has two haplotypes

 chr1 from mother:
 ... A... T... G...

 chr1 from father:
 ... T... C... A...

Testing a single SNP

Contingency table - the number of haplotypes

Dog size vs allele at chr15:44,228,468 [Sutter et al., 2007]

	allele A	allele a	total
small dog (< 9 kg)	14	535	549
large dog (> 31 kg)	339	38	377
total	353	573	

Test if columns and rows are **independent (null hypothesis)** If null hypothesis **rejected**, there is association between SNP and size (not necessarily causal)

If null hypothesis **not rejected**, association not found (perhaps will be found with more data)

Testing independence in a contigency table

	allele A	allele a	total
small dog	14	535	549
large dog	339	38	377
total	353	573	926

Fisher's exact test: (Fisher's exact test) exact probability from hypergeometric distribution

 χ^2 test (chí-kvadrát): popular approximate test, appropriate for large counts

In practice also more complex statistical methods / models (diploid genome, family relationships, ...)

Testing independence in a contingency table by χ^2 test

	allele A	allele a	total
small dog	14	535	549
large dog	339	38	377
total	353	573	926

Under null hypothesis (independence of rows ans columns):

$$Pr(A) = 353/926 = 0.381, Pr(a) = 0.619$$

$$Pr(s) = 549/926 = 0.593, Pr(l) = 0.407$$

$$Pr(A, s) = Pr(A) Pr(s) = 0.226$$

$$Pr(a, s) = Pr(a) Pr(s) = 0.367$$

$$Pr(A, l) = Pr(A) Pr(l) = 0.155$$

$$Pr(a, l) = Pr(a) Pr(l) = 0.252$$

Under the null hypothesis we expect 926 haplotypes in the table divided in ratios 0.226:0.367:0.155:0.252

Testing independence in a contingency table by χ^2 test

Real table

 $O_{i,j}$ (observed):

Expected under null

 $E_{i,j}$ (expected):

	A	a	total			A	a	total
small	14	535	549	-	small	209.3	339.8	549
large	339	38	377	_	large	143.5	233.4	377
total	353	573	926		total	353	573	926

Compute $\chi^2 = \sum_{i \in \{s,l\}} \sum_{j \in \{A,a\}} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$

 $\chi^2 = (14 - 209.3)^2 / 209.3 + (535 - 339.8)^2 / 339.8 + (339 - 143.5)^2 / 143.5 + (38 - 233.4)^2 / 233.4 = 724.3$

 χ^2 is a measure of difference between tables O and E. Always $\chi^2 \ge 0$, and $\chi^2 = 0$ only if tables equal.

Testing independence in a contingency table by χ^2 **test** $O_{i,j}$ (observed): $E_{i,j}$ (expected):

	A	a	total			A	a	total	
small					small	209.3	339.8	549	
large	339	38	377		large	143.5	233.4	377	
total	353	573	926		total	353	573	926	
		$(O E)^2$							

Compute
$$\chi^2 = \sum_{i \in \{s,l\}} \sum_{j \in \{A,a\}} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}} = 724.3$$

Under null hypothesis, χ^2 is approximately from $\chi^2(1)$ distribution,

i.e. chi squared with one degree of freedom.

1 degree: if we know E and 1 number from O, the rest of O can be computed

The probability that under null we get by chance $\chi^2 \ge 724.3$ is $1.6 \cdot 10^{-159}$ (P-value)

To reject null hypothesis use threshold e.g. $P < 0.05, \ \chi^2 > 3.841$

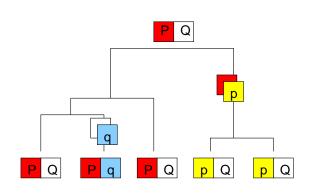
Dependencies between two different SNPs

Consider SNP with alleles p/P and another with alleles q/Q. Count haplotypes pq, PQ, pQ, Pq

Example: 2000 haplotypes (1000 individuals)

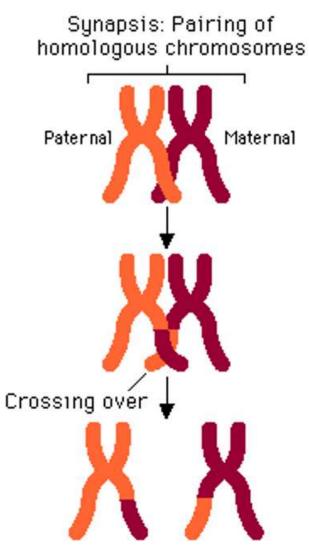
Columns and rows not independent, dependency between the SNPs

Example 2: Similar ratios of counts, but only 30 haplotypes:


Null hypothesis not rejected for threshold P<0.05 ($\chi^2 > 3.841$) Beware, χ^2 not appropriate for such low counts

Why are SNPs dependent?

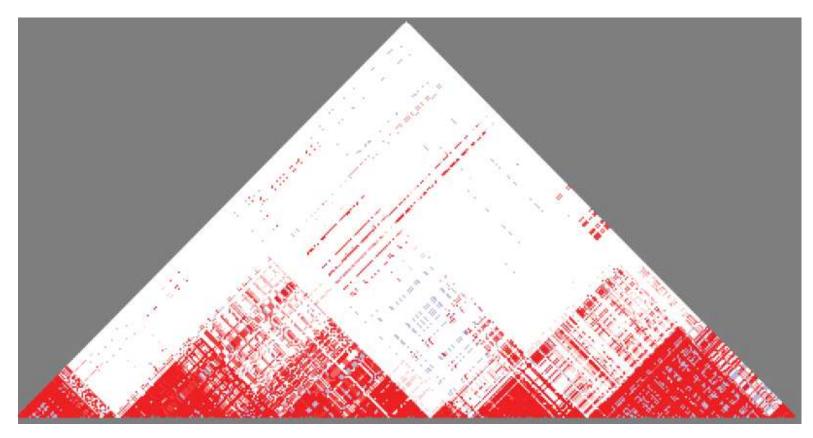
SNPs on different chromosomes:


- Probabilities of individual alleles often independent
- $\Pr(pq) = \Pr(p) \Pr(q)$, $\Pr(PQ) = \Pr(P) \Pr(Q)$, etc.
- linkage equilibrium (LE, väzbová rovnováha)

SNPs nearby on the same chromosome:

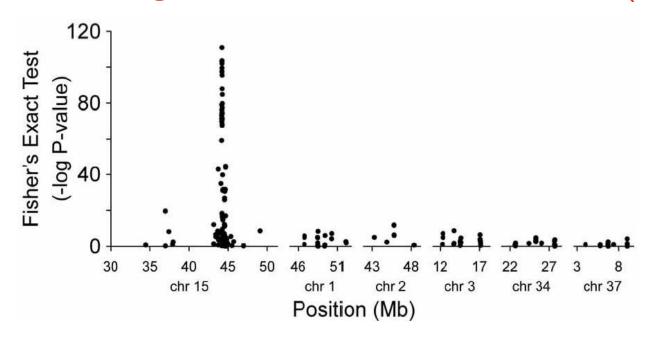
- The same mutation happening twice is rare, recombination also relatively rare
- Allele combinations not completely random
- Correleation between SNPs
 - ⇒ linkage disequilibrium (LD, väzbová nerovnováha)

Recombination

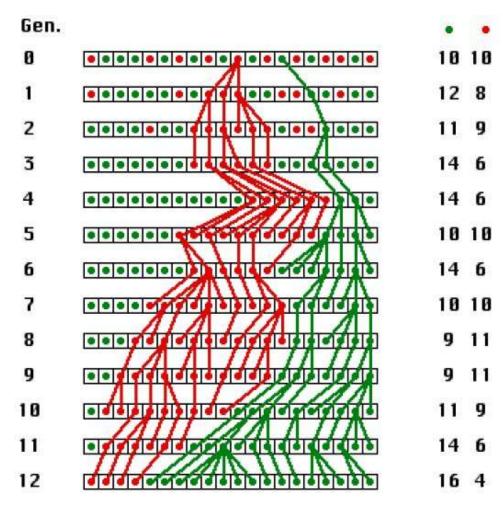

Approx. 1-3 **recombinations** on 1 human chromosome during meiosis (production of sperm/eggs)

Recombination lowers LD

Assuming uniform recombination


- LD decreases with SNP distance on a chromosome
- LD decreases with SNP age
- Other factors: population structure, natural selection, recombination hotspots

Linkage disequilibrium (LD) in the human genome [The International HapMap Consortium, 2005]

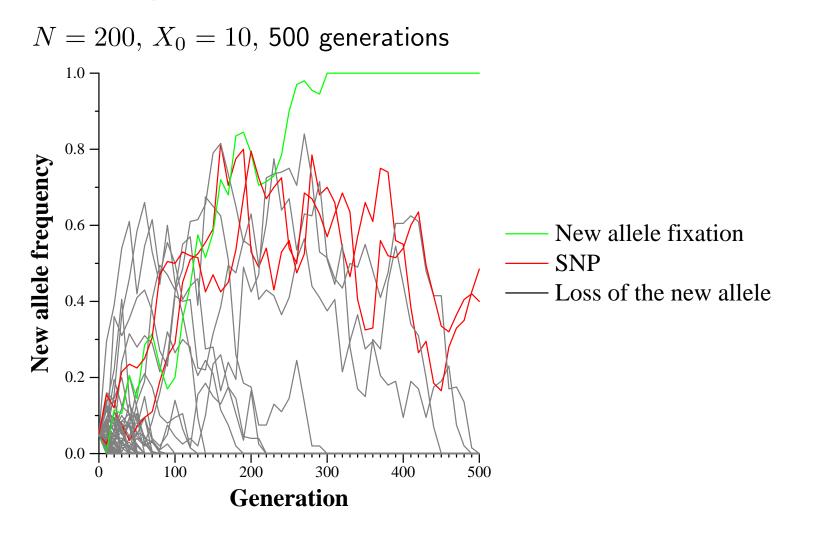

Region ENm014 (500kB, chr 7), 90 people from Utah

Back to dogs: Whole-Genome Association Scan (WGAS)

- For dog size, WGAS identified 84 kB region
- Causal SNP has to be more finely mapped by additional experiments
- Large LD blocks \Rightarrow only can identify large regions

Basic model of population genetics: Wright-Fischer model

Lifecycle of SNPs in Wright-Fisher model


- Population of ${\cal N}$ haploid organisms
- One allele per organism (A or a)
- New generation created as a copy of a random parent (random mating), no influence of natural selection
- X_t : the count of allele a in generation t
- Markov chain with states $X_t \in \{0, 1, \dots, N\}$

$$\Pr(X_t = j \mid X_{t-1} = i) = \left(\frac{i}{N}\right)^j \left(\frac{N-i}{N}\right)^{N-j} \binom{N}{j}$$

(Probability that we have j copies of a in generation t, given i copies in generation t-1

• States 0 and N are absorbing

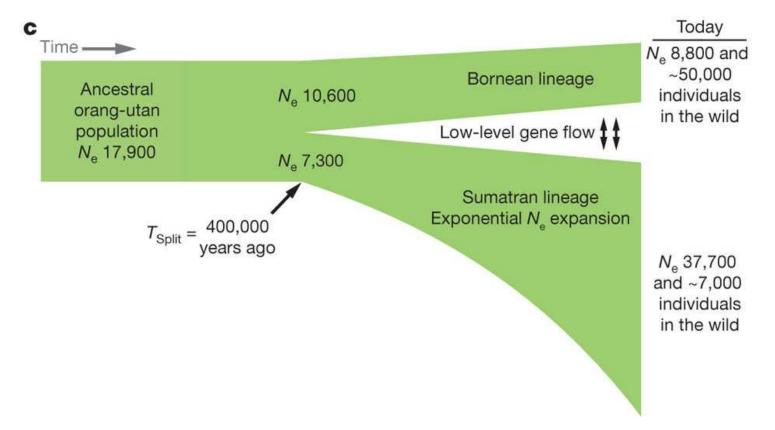
Random genetic drift

More complex models of population

- **Mutations** introduce new alleles, these get eliminated or fixed by random genetic drift
- Speed of fixation influenced by **population structure** or **natural selection**.
- \Rightarrow More complex probabistic models.

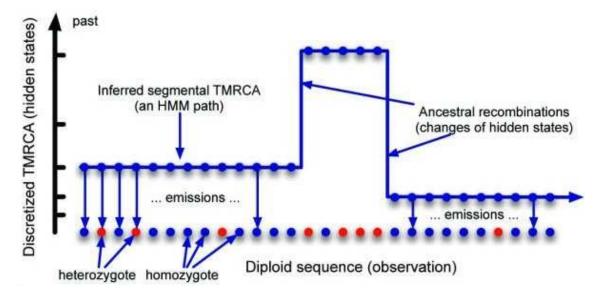
Analysis of population history using probabilistic models

Typical model parameters:

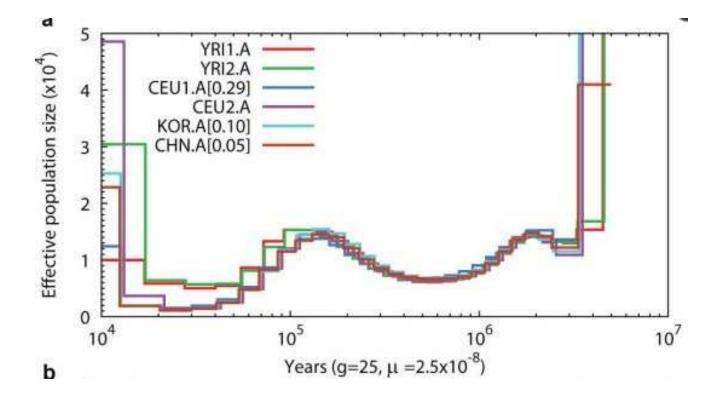

- efective population size
- frequencies of mutation and recombination

These parameters influence observed data:

- SNP frequencies (frequency of minor allele)
- Heterozygocity in diploid individuals
- The number and size of LD blocks

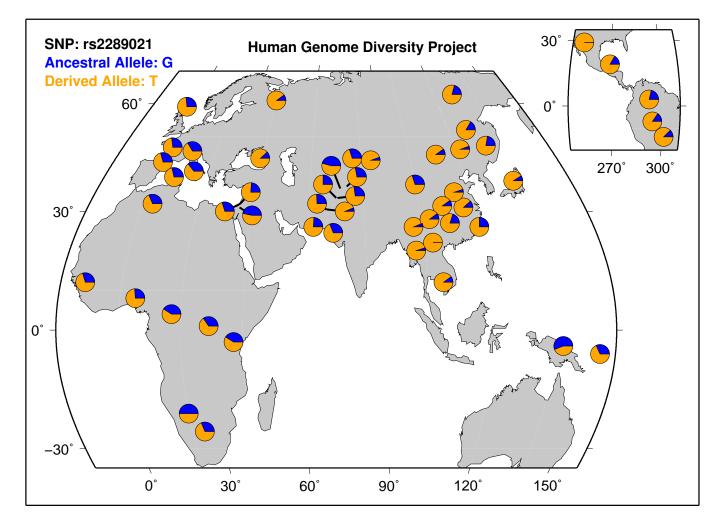

Standard approach: Find parameters of the model best explaining observed data in sequenced individuals

Example: Population history of orangutans

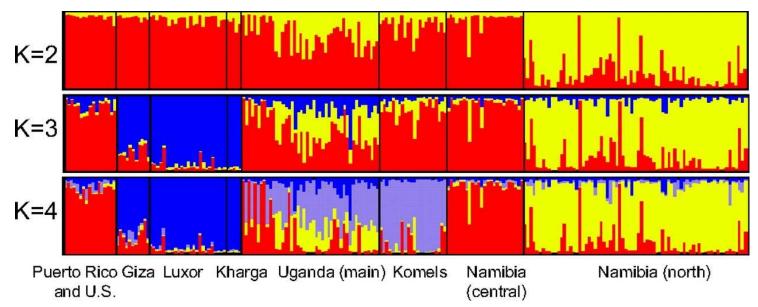

History of a human population from a single human genome (Li, Durbin 2011)

- Model parameters: effective human population time changing over time
- Observed data:
 - sizes of recombination blocks
 - distribution of time to the most recent common ancestor (TMRCA)

History of a human population from a single human genome


Task: Find historical population sizes best explaining observed statistics

Population structure


- Assumption so far: new generation produced by random mating
- Most organisms evolve in **subpopulations**, with limited migration between populations
- Frequencies of the same SNP in two different populations can be very different
- → "false" long-range correlations between SNPs (e.g., even between chromosomes) if we work with a mix of subpopulations
- $\bullet \ \Rightarrow$ erroneous results in WGAS, LD studies, etc.

Example: allele frequencies of a particular SNP in different regions

from genome.ucsc.edu

Wild dog population structure

Boyko et al. PNAS 2009; software STRUCTURE Pritchard et al. Genetics 2000

- Program STRUCTURE splits population into K subpopulations (colors)
- Each column represents an individual from the population
- Ratio of colors represents ratio of SNPs in the mixture of the K subpopulations.

Algorithm used in **STRUCTURE**

- Input: Set of haplotypes X, which we want to separate into K subpopulations
- Define probabilistic model with the following variables:
 - $P_{i,j}$ frequency of SNP j in subpopulation i
 - $Z_{i,j}$ assignment of subpopulation to SNP j in haplotype i
 - Q_i what portion of SNPs in haplotype i belong to which subpopulation
- Model defines $\Pr[X \,|\, P, Q, Z]$ and prior distribution for P, Q
- **Output:** $E[Q \mid X]$

Algorithm Markov Chain Monte Carlo (MCMC)

- Variables:
 - $P_{i,j}$ frequency of SNP j in subpopulation i
 - $Z_{i,j}$ assignment of subpopulation to SNP j in haplotype i
 - Q_i what portion of SNPs in haplotype i belong to which subpopulation
- Start with some initial values P⁽⁰⁾, Z⁽⁰⁾, Q⁽⁰⁾.
 In each iteration obtain a new random sample:
 - Sample $P^{(i)}, Q^{(i)}$ from $\Pr(P, Q \mid X, Z^{(i-1)})$
 - Sample $Z^{(i)}$ from $\Pr(Z \,|\, X, P^{(i)}, Q^{(i)})$
- $\bullet\,$ For sufficently large m and c mean of sequence

$$Q^{(m)}, Q^{(m+c)}, Q^{(m+2c)}, \dots$$

converges to $E[Q\,|\,X]$

Summary

- SNPs (single nucleotide polymorphisms) appear and disappear in populations
- Their frequency influenced by natural selection
- Without recombination, dependency between SNPs on the same chromosome (linkage disequilibrium)
- Recombination creates LD blocks
- LD blocks influence the results of whole-genome association mapping
- Probabilistic models of LD block size, allele frequencies, heterozygocity etc. can reveal population history
- We should consider population structure, which can be estimated using computational methods

Other types of polymorphisms

- Short indels
- Microsatellites a minisatellites

(simple short repeating sequences)13 locuses as a standard "fingerprint" forcomparison of DNA samples in the UScourts

- **Transposons** (Alu, LINE, SINE) Alu has approx. million copies, approx. 1 new copy in 20 newly born
- Large scale copy number variations

			13	CC	DI	S C	ore	s ST	R	Lo	ci
	8		vith	C	iro	mo	son	al	Pos	itic	ons
	TPO)		R	0	-						
ģ.		3813	8	8			E.	8	8	n	0
			F.	5581		DB	S117	9	8	TH01	VWA
			FGA	H	P.	7582	0				
8	U		C	SF1P	Eo		0	8	8		8
1	2	3	4	0	6	1	8	9	10		12
ā	8	8							2	AME	4
D13531	, B	E	B	8	B	8		-			-
8	H	DI	6853	9 1	01855	51		2151	1 -	E	AMEL
13	14	15	16	17	18	19	20	21	22	x	Y