Announcements
e Homework 2 will be published today or tomorrow
e Homework 1 marks will eventually appear in Moodle

e Journal club meetings:
group 4 done, group 2 agreed date,
group 5 7?7, group 6 looking for date
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Recall: What information is stored in DNA?

Genes: Recipes for synthesis of proteins and functional RNAs.
Regulation of their expression: when and how much to synthesize

gene
DNA: :) replication

transcription to RliA

RNA:
RNA processing

Y
RNA: D R
Pr
translation
to protein

- regulation

Regulation at the level of transcription, processing, translation,
posttranslational modifications, . ..



Goals

e Determine under which conditions a gene is expressed
(related to gene function)

e Which genes regulate it

e Details of the regulatory mechanism
(binding sites, expression levels,. . .)



Technology: expression array, microarray
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Measuring the amount of mMRNA present in the sample for many
genes at the same time.
Repeated under different conditions.



Technology: RNA-seq

Sequencing RNA extracted from the sample by NGS technologies,

mapping reads to the genome.

The depth of coverage corresponds to the expression level
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Example from the UCSC genome browser



Example of expression array data

Ratio of gene expression in sample and control fg/bg

15min  30min 1h 2h 4h
W95909 0.72 0.1 0.57 1.08 0.66
AA045003 1.58 1.05 1.15 122 0.54
AA044605 1.1 0.97 1 0.9 0.67
W88572 0.97 1 0.85 0.84 0.72
AA029909 1.21 1.29 1.08 0.89 0.88
AA059077 1.45 1.44 1.12 1.1 1.15

lyer et al 1999 The Transcriptional Program in the Response of Human
Fibroblasts to Serum

Fibroblasts: cells synthesizing components of extracellular matrix.

To divide, they need growth factors added as “fetal bovine serum”.
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Visualization

Red: fg>bg

Green: fg<bg

517 genes (out of 8600)
19 experiments




This lecture: different type of data

Other lectures in this course: work with sequences
e genome assembly
e sequence alignment
e gene finding
e fylogenetic trees, population and comparative genomics

e structure and function of proteins and RNA

Today: table of numbers
e typical data in statistics

e we can use general methods of statistics and machine learning



The first set of problems: preprocessing data

e Read intensity from microarray images, detect invalid

measurements
e Data aggregation from multiple measurements per gene
e Use of control probes
e Normalization to obtain data comparable across experiments

Microarray measurements are very noisy, many sources of errors

A simple result:

list of genes highly underexpressed/overexpressed
e.g. fg/bg> 2, or fg/bg< 0.5

often only these genes used for further analysis
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Clustering (zhlukovanie)

Goal: find groups of genes with similar expression profiles.
If many genes in the group have the same function,
the remaining genes may participate as well

Measuring profile similarity: e.g. Pearson correlation coefficient
Profile of gene 1: x1,29,...,2,, mean T

Profile of gene 2: y1,vys2,...,y,, mean gy

_ Z?:l(xi —Z)(yi — Y)

Vo (@ —T)2 300 (i — §)?
Number between -1 and 1, 1 for linearly correlated data
Distance d(x,y) =1 — C(x,y)

C(z,y)

Also other options, e.g. Euclidean distance

11



Hierarchical clustering

gén

gén
gén

gén

Similar to neighbor joining method for building phylogenetic trees
Start with each gene in a separate group

Find two closest groups and join them to one

Repeat until all genes are in one group

Distance of two groups: e.g. distance of closest genes from one
and the other group or average of distances over all pairs

The result is a tree representing hierarchy of clusters

A B ¢ D E
0 0.6 0.1 0.3 0.7 |

A

B 0.6 O 0.5 0.5 0.4

¢c 0.1 0.5 O 0.6 0.6 ]__‘ ‘ |7_‘
D 0.3 0.5 0.6 O 0.8 A C D B E
E 0.7 0.4 0.6 0.8 O
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Hierarchical clustering - example

Distance of two groups: distance of closest genes from one and the
other group (single linkage clustering)

A B C D E

gén A 0 0.6 0.1 0.3 0.7 [
géen B 0.6 O 0.5 0.5 0.4 A C
géen C 0.1 0.5 O 0.6 0.6
géen D 0.3 0.5 0.6 0 0.8
géen E 0.7 0.4 0.6 0.8 O

A+C O 0.5 0.3 0.6
B 0.5 0 0.5 0.4
D 0.3 0.5 0 0.8 A C D
E 0.6 0.4 0.8 0

A+C+D B+E
A+C+D 0 0.5
B+E 0.5 0 rl:{__w



Example: part of the microarray data
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Clustering helps to visualize data,
similar genes get close to each other
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Classification
e A typical machine learning problem

e We might want to for example distinguish different types of
tumors according to gene expression

e We are given examples with known expression and tumor type

e We want to find a formula which from the expression produces
positive number for tumor type 1 and negative number for type 2

e We choose a family of functions with unknown parameters
(hypothesis class)

e Find parameters that give the best accurracy on training data

e Accuracy of the resulting classifier tested on testing data
(not used for training)

e The classifier then used on expression data with unknown tumor

type
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Toy example: expression of 2 genes

Training data with a known type:

1.0+
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Hypothesis class: linear functions (linear discriminant)
type 1 tumor if ax + by +c¢c <0

The goal is to find a, b, ¢ that work well on training data
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Toy example: expression of 2 genes

Resulting classifier:

1.0

° °
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0.6 °
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a=1,b=3,c= —2.85
type 1 tumor if x + 3y — 2.85 < 0
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Popular classification techniques

Logistic regression:
linear discriminant, assigns probability to each class, well-known
method from statistics

1.0+

Support vector machines | . .
(SVM): find linear discriminant | 4
with no training error which is most % N ’ . Aatypel

) o oo e type?2
distant from all training examples 7" 4

02 A& 0
A
A

0.0+

genel
Can be generalized to non-linear functions by mapping vectors to a

higher-dimensional space
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Popular classification techniques

Neural networks:
“neurons” connected by “synapses’,
output of each neuron is a weighted combination of its inputs

Bayesian networks:
probabilistic model generating random expression profiles
tumor type also a random variable in the model with unknown state

similarly to a state in an HMM
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Gene regulation network from expression data

Input: Expression profile for each gene, perhaps under known
conditions (time series, deletion mutants)

Output: Regulation network; nodes are genes,
directed edge A — B if A regulates B

Expression profile similarity may provide undirected edges
The goal is to remove edges resulting from transitivity

and to direct edges correctly (difficult)
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Transcription factors (TFs)

Regulation of transcription initiation by transcription factors:
DNA binding proteins which help to attract RNA polymerase

DNA

Transcription
factors

Human genome has over 2000 TFs.

They can increase or decrese expression.
They can work in groups.
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Example: E2F1 transcription factor

e Regulates cell cycle

e Binds TTTCCCGC, TTTCGCGC,
and similar variants 5 )
A0 O 0 0O 0 0 0 O
C 0 0 0 4 210 0 9
G 0 0 0 6 8 010 1
T 101010 0 0 O O O

e Goal: represent DNA sequences
bound by a certain TF
as a sequence motif,
then search for additional occurrences
in the genome

23



Representation of binding motifs

String with mismatches (consensus):
motif is a string, occurrences can have a certain number of

mismatches given in advance

Example: motif TTTGGCGC + 1 mismatch
TTTGGCGC, TTAGGCGC, TTTGCCGC are motif occurrences
TTTCCCGC not an occurrence

Choosing motif: take the most frequent letter at each position

A0 O 0 0 O O O O
c 0 0 0 4 210 0 9
G 0 0 0 6 8 010 1
T 101010 0 O O O O

24



Representation of binding motifs 2

Regular expression:

some positions specify character sets

|GC] means position where C or G is allowed
N means any base

Example: motif TTT[CG][CG]CGC
TTTGGCGC, TTTCCCGC, TTTGCCGC are motif occurrences
TTAGGCGC is not an occurrence

Choosing motif: allow several most frequent letters at each position

A0 0O 0O O 0 0 0 O R

C 0 0 0 4 210 0 9

G 00 0 6 8 010 1 : C
T101010 0 0 0O O O 11 Y
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Representation of binding motifs 3

Position specific scoring matrix (PSSM, PWM):
scoring matrix, score for each letter at each position
occurrences achieve score higher than threshold T

Example: T =38

A -2.0 -2.0 -2.0-2.0 -2.0 -2.0 -2.0 -2.0
c -1.6 -1.6 -1.6 0.6 0.0 1.5 -1.6 1.4
G -1.6 -1.6 -1.6 1.0 1.3 -1.6 1.5 -0.5
T 1.1 1.1 1.1 -2.0 -2.0 -2.0 -2.0 -2.0

TTTCCCGC is an occurrence: 1.141.14+1.14+40.64+0.04+1.54+1.5+1.4=8.3
TTTGGCGG is an occurrence: 1.14+1.141.1+1.0+1.3+1.54+1.5-0.5=8.1
TTAGGCGC is not: 1.14+1.1-2.04+1.04+1.341.5+1.54+1.4=6.4

Construction of PSSM: next lecture
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Finding occurrences in the genome

e Consider motif in one of the representations:
— Consensus, e.g. TTTGGCGC + 1 mismatch

— Regular expression, e.g. TTT[CG][CG]CGC

— Scoring matrix, e.g. threshold 7" = 8 and matrix:

A -2.0 -2.0 -2.0-2.0 -2.0 -2.0 -2.0 -2.0
c -1.6 -1.6 -1.6 0.6 0.0 1.5 -1.6 1.4
G -1.6 -1.6 -1.6 1.0 1.3 -1.6 1.5 -0.5
T 1.1 1.1 1.1 -2.0 -2.0 -2.0 -2.0 -2.0

e Test each position in the genome if it is an occurrence

e Occurrences are potential binding sites
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Finding occurrences in the genome: problem

Test each position in the genome if it is a motif occurrence
Besides binding sites, often also many random occurrences

E-value of a motif: how many occurrences are expected in a
random sequence

For example TTT[CG][CG]CGC appears about once in 30,000
bases

To improve specificity, we can search for
— clusters of binding sites
— sites validated by experiments

— evolutionarily conserved sites

Motif databases, e.g. TRANSFAC, JASPAR
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How to find binding sites experimentally?
Chromatin immunoprecipitation (ChIP)

Using an antibody specific to a given TF, we can determine

approximate locations of its binding sites
e TF and DNA crosslinked by formaldehyde
e DNA cut to shorter segments
e Segments with crosslinked TF are bound by the antibody
e DNA is isolated and sequenced (ChlP-seq)

Problem: we find only approximate location of the binding site

Scale 2 kb | hg38

chr20: 62,794,000  62,795,0000 62,796,000  62,797,0000  62,798,0000 62,799,000 62,800,000 62,801,000

GENCODE v32 Comprehensive Transcript Set (only Basic displayed by default)
MRGBP i} B 1 —

OGFR-AS] HEE <
Transcription Factor ChlP-seq Peaks of E2F1 in K562 from ENCODE 3 (ENCFF445VTT)
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How to find motifs by computational methods?

... without having several examples of a binding site

e Assume we have a group of sequences, each containing a binding
site of the same TF, but binding preferences of this TF not known

e The goal is to find the most specific motif, occurring in all
sequences or occurring more frequently than expected

e Currently: using ChlP-seq obtain regions of DNA surrounding
binding sites, find motifs to refine the binding site position

e Originally: take a group of genes with similar expression profiles,
thus possibly regulated by the same TF
find motifs in DNA regions upstream of these genes
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Consensus Pattern Problem (CPP)
Simple formulation of the motif finding problem
Input: motif length L, sequences S1, 59, ...,S5%

Output: motif (string) M of length L
and motif occurrence in each S; (string s; of length L)
such that the overall number of mismatches between M and s;) is

smallest possible

Example:

Input: CAAACAT, AGTAGC, TAACCA, TCTCCTC, L =4
Output: motif TAAC

Occurrences and mismatches AAAC 1, TAGC 1, TAACDO, TCTC 2

Total mismatches 4
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Solving CPP
NP-hard problem

e Idea 1: Try all possible motifs of length L
Problem: Not practical — why?

Idea 2: Try all substrings of length L

of input strings Sq,...,S%

Problem: Sometimes gives wrong answer — why?
But this always finds a solution

with cost at most twice the optimum
(2-approximation algorithm)

Further improvements:

Try consensus sequences

of all samples of r substrings from input

PTAS (polynomial-time approximation scheme)

32

Input: L =4
CAAACAT,
AGTAGC,
TAACCA,
TCTCCTC

Output:

motif TAAC
Occurrences

and mismatches:
AAAC 1,

TAGC 1,

TAAC 0,

TCTC 2

Total mismatches 4



A more practical approach to motif finding

Probabilistc model generating sequence S
using matrix W of base frequences in the motif
and background frequences ¢ outside the motif

A 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
C 0.01 0.01 0.01 0.39 0.19 0.97 0.01 0.01 0.89
G 0.01 0.01 0.01 0.59 0.79 0.01 0.97 0.97 0.09
T 0.97 0.97 0.97 0.01 0.01 0.01 0.01 0.01 0.01
g(A) = 0.3, ¢(C) = 0.2, ¢(G) = 0.2, ¢(T) = 0.3

Motif position in S is chosen randomly and each base is then
generated according to ¢ or one column of W

This model defines Pr(S | ).
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Motif finding based on probabilistic models
Input: motif length L, sequences 5S4, ..., S}, frequencies ¢

Output: motif as a frequence matrix M maximizing likelihood

Pr(Si|W) ... - Pr(Sg|W)

e Hard problem, addressed by heuristic algorithms
e For example EM (expectation maximalization)

e Local optimization, converging to a local maximum of likelihood

e Software: MEME
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EM algorithm overview

¢ Initialization:
Choose initial matrix W
(e.g. based on one input substring of length L)

e lteration:

1. Assign each position j in sequence S; weight p; ; corresponding
to probability that S;[j] is a start of the motif W.

2. Compute W from all possible occurrences in Sy,..., Sk
weighted by p; ;

lterations increase likelihood until convergence.
Repeat, starting from many different starting values W
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Example of the EM algorithm

0N >

0.10
0.10
0.10
0.70

0.10 0.10 0.10 010 A 031 0.14
0.10 0.10 070 070 C 0.06 0.10
0.0 0.10 0.10 010 G 0.12 O0.17
0.0 0.70 0.10 010 T 0.51 0.60
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0.06
0.19
0.29
0.46

0.07
0.71
0.14
0.08

0.07
0.61
0.25
0.07



Example of the EM algorithm: next iteration

A 031 014 006 007 007 A 047 0.09
c 006 010 019 o071 061 C 0.02 0.11
G 012 017 029 014 025 G 0.08 0.22
T 051 060 046 008 007 T 042 0.58
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0.01
0.20
0.48
0.30

0.02
0.80
0.15
0.03

0.03
0.58
0.35
0.03



Example of the EM algorithm: after 20 iterations

A 010 € € € €
C 012 052 048 1—3¢ €
G ¢ 0.48 052 ¢ 1 — 3¢
T 0.78 ¢ € € €
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Summary

Microarrays or RNA-seq can characterize expression levels of many
genes at once, but produce noisy data

Clustering (zhlukovanie) can find similar genes
no prior training set is necessary (unsupervised learning)

Classification can distinguish e.g. diseases according to expression
needs training data with known answers (supervised learning)

Expression data help to build regulatory networks

Binding motifs can be represented in various forms

(string, regular expression, scoring matrix)

These motifs are not sufficiently specific, therefore it is hard to
recognize binding sites in the genome

EM algorithm for finding new motifs in sequences
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