Oznamy

- Deadline of HW2 extended until Dec. 7
- HW3 will be published next week
- Next Thursday Dec.2: lecture and tutorials cancelled
- Thursday Dec.9: lecture and tutorials online
- Thursday Dec.16:
 - optional presentations of journal club during lecture time
 - tutorial for comp.sci. will take place
 - tutorial for biologists possibly cancelled
- End of semester deadlines
 - HW3 Tuesday Dec. 14, journal club reports Friday Dec. 17
- On Thursday Dec. 9, we will discuss:
 - if you want to present journal club (discuss in the group)
 - date of the exam (bring dates of other exams)

Recall: journal club report

- The main methods and results of the article in your own words
- Understandable for students of this course (both comp.sci. and bio)
- You do not have to cover the entire content of the article in the report and, conversely, you can use other resources
- Try to express your own view of the topic, do not strictly follow the text of the article
- The recommended length is about 1-2 pages per person, one coherent text
- The report should list the members of the group who have actively participated. They will get the same points (the rest zero)
- Submit via Moodle, 1 pdf per group

RNA

Tomáš Vinař Nov. 25, 2021

Properties of RNA

Differences from DNA

- contains ribose instead of deoxyribose
- contains uracyl instead of thymine (bases A,C,G,U)
- single-stranded molecules, usually shorter
- complex secondary structure with paired complementary regions
- pairs A-U, C-G as well non-canonocal pairs e.g. G-U
- various functions in the cell: central role in gene expression (messanger RNA, transfer RNA, ribosomal RNA), regulation of expression, catalythic functions,
 - transfer of genetic information for RNA viruses

RNA structure

Example: transfer RNA

Secondary structure: pairing of nucleotides

Figure source: Wikipedia

Sekundárna štruktúra RNA

Representation using well-parenthesized expression:

Well-parenthesized expression vs. pseudoknots

Left: can do well-parenthesized expression

Well-parenthesized expression vs. pseudoknots

Approx. 1.4% of paired RNA bases involved in pseudoknots Yet many algorithms **ignore pseudoknots**

Well-parenthesized expression vs. pseudoknots

Mathematical structure of secondary structure w/o pseudoknots:

If position i is paired with j and position i' with j'where i < i' then either i < i' < j' < j or i < j < i' < j'.

Problem: determining secondary RNA structure

Input: RNA sequence **Goal:** find which bases are paired

Simplified formulation: find well-parenthesized expression corresponding to the structure with the highest number of complementary pairs A-U, C-G.

Example:

Input: GAACACAUGUAAAAUUUGUC
Output: ((.((()))((.))))

Nussinov algorithm

Dynamic programming:

Given RNA x_1, \ldots, x_n .

A[i,j] = the maximum number of matched pairs in $x_i, x_{i+1}, \ldots, x_j$

Nussinov algorithm

Dynamic programming:

Given RNA x_1, \ldots, x_n . A[i, j] = the maximum number of matched pairs in $x_i, x_{i+1}, \ldots, x_j$

Recurrence:

Substrings of length 1: no pairs possible $\Rightarrow A[i, i] = 0$ Longer substrings:

- x_i not involved in a pair: A[i, j] = A[i+1, j]
- x_i paired with $x_j: A[i, j] = A[i + 1, j 1] + c(x_i, x_j)$
- x_i paired with x_k (k < j): A[i, j] = A[i, k] + A[k+1, j]

Rekurencia:
$$A[i, j] = \max \begin{cases} A[i+1, j], \\ A[i+1, j-1] + c(x_i, x_j), \\ \max_{k=i+1...j-1} \{A[i, k] + A[k+1, j]\} \end{cases}$$

 $c(x_i, x_j) = \begin{cases} 1 & \text{if } x_i \cdot x_j \text{ is A-U or C-G pair} \\ 0 & \text{otherwise} \end{cases}$
 $A[i, j] = 0 \text{ for } i \ge j$
 $A = \bigcup_{i=1}^{j} \bigcup_{$

Minimum free energy (MFE) folding

More realistic formulation

Assumption: the molecule in the state of equilibrium with minimum Gibbs free energy.

Energies for modules measured experimentally.

Nearest neighbor model: parameters = energies for neighbouring pairs in helixes, lengths of loops, etc.

Derived from experimental measurements.

Algorithms similar to the Nussinov algorithm [Zuker and Stiegler, 1981].

Algorithms allowing pseudoknots

NP-hard in general [Lyngso and Pedersen, 2000].

Slow dynamic programming $O(n^4) - O(n^6)$ for certain pseudoknot types [Rivas and Eddy, 1999].

Or use heuristics [Ren et al., 2005] (repeated greedy formation of strong helixes).

Probabilistic models for RNA secondary structure prediction

Want: Generative model for pairs sequence, secondary structure Use: For a given sequence, find most probable structure

HMMs are **not** suitable: cannot capture dependencies between distant pairs

Solution: Stochastic context-free grammars (SCFGs)

- extension of context-free grammars
- individual rules will get probabilities

Stochastic context-free grammars (SCFGs)

non-terminals (upper-case) similar to states in HMMs terminals (lower-case) represent nucleotides rules rewrite non-terminals to strings of terminal and non-terminals each rule has assigned probability

Example: single non-terminal, 14 rules (ϵ =empty string) $\begin{array}{c} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 \\ \end{array}$ $\begin{array}{c} 0.1 & 0.1 & 0.1 \\ \hline aSu & uSa & cSg & gSc \\ \hline 0.05 & 0.05 & 0.05 & 0.05 \\ \hline aS & cS & gS & uS & Sa & Sc & Sg & Su & SS \\ \end{array}$

In each step choose the left-most non-terminal rewrite with a randomly chosen rule:

 $S \rightarrow SS \rightarrow aSuS \rightarrow acSguS \rightarrow acuSaguS \rightarrow acugSaguS \rightarrow acugaguS \rightarrow acugagucSg \rightarrow acugaguccSgg \rightarrow acugaguccSagg \rightarrow acugaguccaSagg \rightarrow acugaguccaSgg \rightarrow acuguguccaagg$

Stochastic context-free grammars

Example:

 $S \rightarrow aSu|uSa|cSg|gSc|aS|cS|gS|uS|Sa|Sc|Sg|Su|SS|\epsilon$

 $S \rightarrow SS \rightarrow aSuS \rightarrow acSguS \rightarrow acuSaguS \rightarrow acugSaguS \rightarrow acugaguS \rightarrow acugaguCSg \rightarrow acugaguCSCg \rightarrow acugaguCSacg \rightarrow acugaguCSacg \rightarrow acugaguCSacg \rightarrow acuguguCSacg \rightarrow acugaguCSacg \rightarrow acugaguC$

A-U C-G C-G C-G U-A AA G

Problem: Find most probable derivation of given RNA Bases generated in a single rule represent **paired bases**

Solution: Dynamic programming, algorithm CYK, $O(n^3)$ time **Training:** Probabilities trained from known RNA structures

Grammars vs. energy minization

Grammar advantages:

- parameters can be trained automatically, no expensive experiments
- can be extended to multiple sequences

Grammar disadvantages:

- simple grammars do not capture full complexity of the problem
- lower accuracy

RNA sequence evolution

Often correlation between mutations in paired bases e.g. C changes to A, paired G changes to U simultaneously

Example: several sequences from t-RNA D-arm

(((((....))))) GCUCAGCC.CGGG..AGAGC GCCUAGCC.UGGUCA.AGGGC GUCUAGC..GGA..AGGAU GAGCAGUU.CGGU..AGCUC GUUCAAUC.GGU..AGAAC

Problem: given a multiple alignment of RNA sequences find a common RNA structure

(common structure will exhibit correlations between paired bases)

Common RNA structure for several RNA sequences

Phylo-SCFG:

- terminals will be **whole alignment columns** use phylogenetic tree structure
- unpaired bases emitted using a regular substition matrix
- paired bases emitted using a 16×16 substition matrix (all pairs)

Problem: Finding known types of RNA genes in genomes

- Rfam database contains structures for > 4000 RNA families represented using probabilistic models
- Similar idea to profile HMMs used for representation of protein families (Pfam database)
- Special type of SCFGs called **covariance models**

Covariance models (CMs)

S =start, E_i =end, P_i =pair,
 L_i =unpaired base on the left, R_i =unpaired base on the right other non-terminals to represent indels

terminals (bases) emitted with probabilities specific to each alignment column

e.g. $P_1 \rightarrow \overbrace{aP_2u}^{0.2} | \overbrace{uP_2a}^{0.2} | \overbrace{cP_2g}^{0.4} | \overbrace{cP_2u}^{0.1}$

Covariance models (CMs)

Uses:

finding occurrences of a gene in DNA (local alignment), finding structure of a new gene from a known family (global alignment).

Dynamic programming: time $O(MND^2)$

 ${\cal M}=$ the number of non-terminals, proportional to the alignment length

 ${\cal N}={\rm the}~{\rm length}~{\rm of}~{\rm DNA}$,

 $D = \max$. length of an RNA gene (related to M).

Heuristic speedup: find potential sites with sequences similar to known family representatives, apply CM only there

Problem: RNA secondary structure design

Given RNA secondary structure (pairing) Find a sequence for which this is the optimal structure.

No known efficient algorithm, but fast heuristics work well

Use: research on possible RNA structures, drug design (ribozymes, riboswitches), RNA for laboratory techniques, RNA nanostructures

Summary

- RNA secondary structure prediction: energy minimization, probabilistic SCFGs
- Can achieve better results if we use a multiple alignment of several RNA sequences with a common structure (PhyloSCFG)
- Known RNA families can be represented by covariance models, these can be used to locate occurrences in novel sequences
- Rfam database
- Most problems can be solved by dynamic programming
 - somewhat slow
 - ignores pseudoknots
- Other interesting problems: RNA design