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Times and Leture Rooms

� Leture Thu 15:40-17:10 leture hall C

� Tutorials (CS) Thu 14:00-15:30 leture hall C

� Tutorials (Bio) Thu 17:20-18:50

leture hall C and omputer room M-217

we plan to reord/stream letures and CS tutorials

�CS�: students of omputer siene, bioinformatis, applied

informatis; please enrol under 1-BIN-301 ode

�Bio�: students from the Faulty of Natural Sienes, students of

biomedial physis; please enrol under 2-AIN-501 ode

others: ontat us
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Course Goals

� Everyone: Overview of basi methods for analysis of biologial

sequenes and other data sets in moleular biology

� CS: Algorithms and data strutures, mahine learning, probability.

How to develop mathematial abstrations for real-world problems.

� Bio: Mathematial models at the ore of popular bioinformatis

tools, how to use tools, interpretation of their results.

� Everyone: Experiene with an interdisiplinary ollaboration.
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Grading

3 homework assignments 30% (10% eah)

Journal lub 10%

Quizzes 10% (1 point eah week)

Final exam 50%

(no quizzes for English speaking guests)

Final grade: A: 90+, B: 80+, C: 70+, D: 60+, E: 50+

At least 50% of the �nal exam is required

� Two versions of questions: bio and CS

� Journal lub: read a researh paper, write summary in a group

(optional presentations for bonus points)

� You are allowed 2 double sided A4 pages as a heat sheet on the

exam

� DO NOT COPY, DO NOT CHEAT!
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What to expet from letures and tutorials

Typial leture

� Biologial introdution to a problem

� Formulation/abstration as a omputer siene problem

� Algorithm idea for the problem solution(s)

Typial tutorial

� CS: algorithmi details and extensions, bakground biologial

knowledge

� Bio: appliations to onrete data sets, what do various

parameters mean and how to set them, bakground omputer

siene knowledge,
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Weekly quizzes

� Ca 5 short questions onerning last week's letures and tutorials

� Due on Wednesday 10pm

� Moodle link on the web page

� Goal: review basi onepts from the leture and the tutorial

� First quiz already this week
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Example from our researh

ommon marmoset, Callithrix jahus, 250g, 18m

Genome sequened in 2007

(Washington University St. Louis a Baylor College of Mediine, USA)

Analysis published in 2014
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IGF1R: Insulin-like growth fator 1 reeptor

Protein passes through ytoplasmi membrane on the ell surfae

After binding to growth hormones IGF1, IGF2 signals into the ell

Funtions related to the ell growth and division,

organism growth, aner
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What bioinformatis tools were needed for this researh?

1. Assemble genome from sequening reads

2. Find sequene similarities to other genomes

3. Find genes oding for proteins

4. Find genes under positive seletion

5. Determine struture and funtion of the proteins
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1. Genome assembly

� We an only sequene short fragments of DNA

(e.g. of length 1000)

� Eah plae in the genome is sequene multiple times (for

marmoset on average 6×)

� We need to �glue� sequening reads together based on overlaps

� Huge amount of data ⇒ need e�ient algorithms
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2. Finding similarities to other genomes

For eah plae in the marmoset genome �nd orresponding plaes in

other genomes (e.g. human, himp, mouse, . . . )
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2. Finding similarities to other genomes

� We are looking for similarities between DNA sequenes

Human AGTGGCTGCCAGGCTG---GGATGCTGAGGCCTTGTTTGCAGGGA

Rhesus AGTGGCTGCCAGGCTG---GGTTGCTGAGGCCTTGTTTGCCGGGA

Mouse GGTGGCTGCCGGGCTG---GGTGGCTGAGGCCTTGTTGGTGGGGT

Dog AGTGGCTGCCCGGCTG---GGTGGCTGAGGCCTTATTTGCAGGGA

Chiken AGTGGCTGCCAGTCTGCGCCGTGGCCGACGTCTTGCTCGGGGGAA

� Basi tehnique used here is alled dynami programming

whih an deompose a large problem into many smaller (and easier) ones

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

-1 1 0 -1 -2 -3 -4 -5 -6 -7 -8

-2 0 2 1 0 -1 -2 -3 -4 -5 -6

-3 -1 1 1 2 1 0 -1 -2 -3 -4

-4 -2 0 2 1 1 0 -1 -2 -1 -2

-5 -3 -1 1 3 2 1 1 0 -1 -2

-6 -4 -2 0 2 4 3 2 1 0 -1

-7 -5 -3 -1 1 3 3 2 1 2 1

-8 -6 -4 -2 0 2 2 4 3 2 1

-9 -7 -5 -3 -1 1 1 3 5 4 3

C

A

T

G

T

C

G

T

A

C A G T C C T A G A

� The table is very large, in pratie many improvements and heuristis to

make this pratial
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3. Finding genes oding for proteins

DNA:

RNA:

RNA:

RNA: protein:

transcription to RNA

RNA processing

to protein
translation

regulation

gene
replication

Whih parts of the sequene genome ode for proteins
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3. Finding genes oding for proteins

� Needle in a haystak: only 1% of human genome odes for proteins

� Code for a single protein is broken into many short parts (exons)

� IGF1R overs 315 569nt, but only 4101nt in 21 exons ode for the

protein

chr15: 98,700,000 98,750,000 98,800,000 98,850,000 98,900,000 98,950,000
IRAIN

IGF1R
IGF1R

MIR4714

� Take known genes, ollet various statistis

�nd other regions of the genome with a similar statistial pro�le
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4. Searh for genes under positive seletion

� Study of evolutionary proesses

� Mutations in DNA over time are subjet to natural seletion

� Most of random hanges in a protein are harmful, thus segments

enoding proteins typially mutate very slowly
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4. Searh for genes under positive seletion

� Sometimes a bene�ial mutation is disovered, followed by a surge

of other mutations optimizing the new funtion → positive

seletion
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5. Determining funtion and struture of proteins

� After steps 1-4, we have a list of 37 genes under positive seletion

in the marmoset genome

� What is their funtion? Any of them related to marmoset size?

� What is the shape of the protein, where are the position under

positive seletion loated?

� Protein struture (shape) an be determined experimentally

expensive and time onsuming, instead 3D struture preditions
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Genome Sequening and Assembly

(Sekvenovanie a zostavovanie genómov)

Tomá² Vina°

23.9.2021
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DNA Sequening Overview

1. Chromosomes are ut randomly into smaller fragments

(e.g. using soniation)

2. Eah fragment is opied multiple times

(e.g. through PCR, baterial loning, . . . )

3. Ends of fragments are sequened by one of the sequening

tehnologies

⇒ many short strings alled reads

4. Short strings are omputationally assembled bak into

hromosomes
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Overview of Sequening Tehnologies

Tehnology Read length Errors Output per day Cost per MB

1st generation

Sanger up to 1000bp < 1% 3 MB $4000

2nd (next) generation (a 2004)

Illumina 250bp < 0.1% 150 GB $0.03

3rd generation (emerging)

PaBio a 14kbp 10% 700 GB $0.02

PaBio HiFi a 15kbp < 1% 70 GB $0.20

Oxford Nanopore really long up to 10% 50 GB $0.02
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Bioinformatis Problem: Sequene Assembly

(zostavenie genómu)

� Input: short DNA fragments (reads)

� Goal: reonstrut the sequened genome

� using sequene identity in overlapping reads

� Important fators:

� Size of the genome

� Length of individual reads

� Coverage � how many times on average is the genome

overed?
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Simple but Unrealisti Formulation

Shortest ommon superstring problem.

We are given several strings S1, . . . Sk (sequened reads),

�nd the shortest string S ontaining eah Si as a (ontiguous)

substring

Motivation: use overlaps between reads as muh as possible

Example:

Input: GCCAAC,CCTGCC,ACCTTC

Output: CCTGCCAACCTTC (reads onneted in order S2, S1, S3)
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Shortest Common Superstring

� NP hard problem

no known polynomial-time algorithm an �nd optimal answer for

eah input

� Simple heuristis: repeatedly �nd two reads with longest overlap

and onnet them to a single read

� Example: CATATAT, TATATA, ATATATC

Optimum: CATATATATC, length 10

Heuristis: CATATATCTATATA, length 14

� This heuristis is an approximation algorithm:

It �nds a string whih is at most 3.5× longer than optimal

superstring

� Conjeture: it is in fat a 2-approximation algorithm

� There is a di�erent 2.5-approximation algorithm
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Shortest Common Superstring: Unaounted Fators

� Sequening errors

� Polymorphism

� Two strands (reads ome in two di�erent orientations)

� Contamination (e.g. by DNA from bateria used for loning),

himeri reads

� Multiple hromosomes, inomplete genome overage

� Sequene repeats

a 50% of human genome is repetitive DNA

Example: 10xTTAATA, 10xATATTA, 3xTTAGCT

TTAATATTAGCT?

TTAATATTAATATTAATATTAATATTAGCT?

TTAATATTA + ATATTAGCT?
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Unaounted fators: base quality

� Reads typially aompanied by base qualities

How likely is this base orret?

� Base with quality q ⇒ probability of error 10−q/10

i.e. base with q > 40 is orret for 99.99%

Example of Sanger sequening result (trae):
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Shortest Common Superstring: Simplifying Fators

Additional information: pair-end reads

500bp known distance 500bp
plasmid 2−10 kB

cosmid 40 kB

Simpli�ation: we do not need to onnet everything to one string,

we onnet only parts bridged by multiple reads.

Conservative approah: sari�e ompleteness for auray
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Shortest Common Superstring: Summary

� Unrealisti formulation and di�ult problem

� Perhaps theoretial problem an yield some insights into real

appliation?

� Overlap-Layout-Consensus approah motivated by greedy

algorithms (join fragments with large overlaps)
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Assembling Short Reads: de Bruijn Graphs

� Split reads to overlapping windows of length k

� de Bruijn graph of dimension k is a direted graph:

� verties: substrings of length k from all reads

� direted edges: onnet k-mers onseutive in at least one of

the reads (overlapping by k − 1 bases)

� Example: k = 2, reads: CCTGCC, GCCAAC

CC CT TG GC

CA AA AC
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How to use de Bruijn graph for assembly?

CC CT TG GC

CA AA AC

� If there was only a single hromosome and there were no

ambiguous k-mers, the orret assembly would orrespond to a

Eulerian path: a path in the graph whih uses eah edge exatly

one

� We an easily test if suh a path exists and to �nd it in O(m+ n)

� In general, assembly will orrespond to a set of walks in the de

Bruijn graph overing most edges
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Example: reads and their de Bruijn graph

GTCGAGCAAGTACGAGCATAG

TCGAGCA AGCATAG

AGCAAaT AGCATAG

GTCGAcC GTACGAG

GTCGAGC TACGAGC

CGAGCAA ACGAGCA

AGTgCGA

CAAGTAC

GCAAGTA GAGCAT

GAGCAAG GAGCATA

TACGAGC

GCA CAT
4x

CAA

4x

GAc AcC
1x

GAG AGC
9x

TAGGTC TCG
2x ATA

3x
9x

2x
CGA

1x

8x

3x

AAG
3x

AAa1x GTA TAC
2x

AGT
2x

ACG

4x

AaT 2x

GTg
1x

TgC
1x

3x1x

gCG

1x

1x
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Example: simplifying de Bruijn graph

GCA CAT
4x

CAA

4x

GAc AcC
1x

GAG AGC
9x

TAGGTC TCG
2x ATA

3x
9x

2x
CGA

1x

8x

3x

AAG
3x

AAa1x GTA TAC
2x

AGT
2x

ACG

4x

AaT 2x

GTg
1x

TgC
1x

3x1x

gCG

1x

1x

Unique paths are ontrated to a single vertex

CGA GAcC

GAGCA CATAG

CAA

GTCG

GTACGAAaT

AAGT GTgCG
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Example: removing errors from de Bruijn graph

CGA GAcC

GAGCA CATAG

CAA

GTCG

GTACGAAaT

AAGT GTgCG

Remove tips and bubbles with low overage

AAGT GTACG

CGA

CAA

GAGCA CATAGGTCG

Contrat unique paths again ⇒ four ontigs

(originally GTCGAGCAAGTACGAGCATAG)

CGAGCA CATAG

CAAGTACG

GTCG
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Typial Results of Assembly

� Many short ontigs that an be further ombined to longer

sa�olds by using pair-end read information

� Some portions annot be resolved due to long repetitive

sequenes

Example: Human hromosome 14, 88 Mbp, 70× overage

(soure: GAGE)

Method Contigs Errors N50 orr

Velvet (basi de Bruijn) >45000 4910 2.1 kbp

Velvet (with sa�olding) 3565 9156 27 kbp

AllPaths-LG 225 45 4.7 Mbp

N50: ontigs with this length or longer ontain 50% of the genome

here N50 after error orretion is shown
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Summary

� Sequening is a ompliated proess in whih bioinformatis plays

an important role

� Illumina tehnology o�ers extremely low prie but only short reads

� Problem of genome assembly, shortest ommon superstring

� de Bruijn graphs: a pratial solution for short reads

� Assembled sequene may ontain errors, gaps, multiple ontigs

� Next leture: How to deal with 3rd generation reads?

� Genome overage and read size are determining fators in how

fragmented assembly will be:

� for Sanger reads: typially 7− 10× overage

� for NGS reads: typially 40− 70× overage

� for 3rd generation: 30× overage
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Genome Sequening Milestones

1976 MS2 (RNA virus) 40 kB

1988 Human genome sequening projet (15 years)

1995 baterium H. in�uenzae 2 MB, shotgun (TIGR)

1996 S. erevisiae 10 MB, BAC-by-BAC (Belgium, UK)

1998 C. elegans 100 MB, BAC-by-BAC (Wellome Trust)

1998 Celera: human genome in three years!

2000 D. melanogaster 180 MB, shotgun (Celera, Berkeley)

2001 2x human genome 3 GB (NIH, Celera)

after 2001 mouse, rat, hiken, himpanzee, dog,. . .

2007 Genomes of Watson and Venter (454)

2012 1000 human genomes

soon 10k vertebrate genomes, sequening as a diagnosti tool

2021 3.5 million SARS-CoV-2 genomes
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Sequening and Genome Assembly

(part 2 - long reads)

Tomá² Vina°

30.09.2021
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Overview of Sequening Tehnologies

Tehnology Read length Errors Output per day Cost per MB

1st generation

Sanger up to 1000bp < 1% 3 MB $4000

2nd (next) generation (a 2004)

Illumina 250bp < 0.1% 150 GB $0.03

3rd generation (emerging)

PaBio a 14kbp 10% 700 GB $0.02

PaBio HiFi a 15kbp < 1% 70 GB $0.20

Oxford Nanopore really long up to 10% 50 GB $0.02

2



From the last leture

� Genome is assembled from sequening reads

� Genome assembly using de Bruijn graphs

� de Bruijn graphs not suitable for long reads with high error rate

� �Disassembly� to k-mers throws away too muh information

(read length 10000+, k is usually between 30 and 70)

� Error rate around 10% makes de Bruijn graph unwieldy

(for k = 31, k-mer 3 errors on average)
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Overlap�Layout�Consensus approah

� Overlap: Find overlaps between reads

and reate an overlap graph

� Layout: Simplify the overlap graph and �nd paths whih will

orrespond to ontigs

� Consensus: For eah ontig loate overlapping reads and

onstrut a sequene as a onsensus at eah position

(orrets loal errors)
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Overlap: Finding read overalps

CATCTCTAGGCCAGC

|||||| ||

TAGGCCTGCTTCTTG

� speial ase of the sequene alignment (next leture)

� overlaps will ontain errors

(in our ase approx. 1 error per 10bp of the overlap)

� there are many reads: 30× human genome overage

⇒ a 9 mil. of reads of length 10000

we annot a�ord to ompare all pairs of reads

� pratial approa:

� fast pre-�ltering of suitable andidate pairs of reads

(for example those ontaining a ommon k-mer)

� followed by a slower alignment for andidate pairs
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Layout: Creating the overlap graph

� Example result from the previous phase:

CATCTCTAGGCCAGC / TAGGCCTGCTTCTTG, overlap 9 bp

. . .

� Create overlap graph:

verties: reads weighted edges: overlaps and lengths

Example:

to_every_thing_turn_turn_turn_there_is_a_season

read length 7, minimum required overlap 4
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Example:

to_every_thing_turn_turn_turn_there_is_a_season

read length 7, minimum required overlap 4

Example and �gures by Ben Langmead
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Layout: Transitive edges

� Some edges are super�ous beause they say the same thing as

other edges
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Layout: Removal of transitive edges
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Layout: Identifying ontigs

Original sequene:

to_every_thing_turn_turn_turn_there_is_a_season

Non-branhing paths represent ontigs

Result:
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Consensus: Obtaining the �nal sequene
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Di�erenes between de Bruijn graphs and the overlap graph

de Bruijn graphs

� �xed length of overlaps

� throw away information about

ontiguity spanning more than

k bp

� genome represented by paths

� errors: bubbles and tips

� errors resolved in

pre-proessing

� ontigs over almost all edges

Overlap graphs

� variable length of overlaps

� use most of the information

derived from overlaps

� genome represented by paths

� errors are �hidden�

� errors resolved in

post-proessing (onsensus)

� transitive edges need to be re-

moved
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Example: Assembling genome of Magnusiomyes apitatus

(genome length 19.6 Mbp, 4 hromosomes + mtDNA)

Tehnology Coverage # ontigs largest avg N50

Illumina / Spades 250x 1102 172.6 Kbp 17.6 Kbp 62.0 Kbp

PaBio / Canu 37x 17 4.7 Mbp 1.2 Mbp 1.7 Mbp

PaBio + MinION 65x 11 4.4 Mbp 1.8 Mbp 2.0 Mbp
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Summary

� Long reads allow us to assemble muh more ontiguous genome

sequenes ompared to short reads

� Fast algorithms required to loate read overlaps

(more in the next leture)

� Overlap graphs and de Bruijn graphs are similar onepts

attempts at unifying the two
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Genome Sequening Milestones

1976 MS2 (RNA virus) 40 kB

1988 Human genome sequening projet (15 years)

1995 baterium H. in�uenzae 2 MB, shotgun (TIGR)

1996 S. erevisiae 10 MB, BAC-by-BAC (Belgium, UK)

1998 C. elegans 100 MB, BAC-by-BAC (Wellome Trust)

1998 Celera: human genome in three years!

2000 D. melanogaster 180 MB, shotgun (Celera, Berkeley)

2001 2x human genome 3 GB (NIH, Celera)

after 2001 mouse, rat, hiken, himpanzee, dog,. . .

2007 Genomes of Watson and Venter (454)

2012 1000 human genomes

soon 10k vertebrate genomes, sequening as a diagnosti tool

2021 3.5 million SARS-CoV-2 genomes
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Use of NGS: Population genetis

� Obtain sequene reads from one individual

� What are the di�erenes of the individual from the �referene�

genome?

� How do geneti hange in�uene phenotype?

� Personalized mediine

� Population struture and history

� Ethial questions

Bioinformatis problems:

� Mapping short reads to referene sequene

� Identi�ation of di�erenes (both loal and large-sale)
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Use of NGS: Environmental sequening � metagenomis

� What miroorganisms live in our bodies?

gut �ora, mouth, skin, . . .

� Mirobial diversity in di�erent eosystems

� It is di�ult to isolate individual speies

� We an sequene a mixture of di�erent genomes

� Then we try to assemble at least short ontigs

Bioinformatis problems:

� Binning: Separation of reads from di�erent genomes
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Use of NGS: identi�ation of genes, binding sites,. . .

� RNA-seq: sequening mRNAs, obtaining positions of genes and

their expression levels

� Chip-Seq: �ltering DNA bound by a ertain protein, sequening

them and mapping to the genome

Bioinformatis problems:

� Identi�ation of splie sites

� Identi�ation of binding sites using read overage
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DNA:

RNA:

RNA:

RNA: protein:

transcription to RNA

RNA processing

to protein
translation

regulation

gene
replication
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Sequene Alignment (zarovnávanie sekvenií) 1/2

Tomá² Vina°

Otober 7, 2021

[Durbin et al., 1998, hapter 2℄
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Problem: Loal alignment

g g    t t g g a g t t g a  t g t   t g  t g  t   t t g a g g

  a t t  t  a g a g a g a g g a a g t g g   t  a t t t t a a t 

 g  t t    a  a g   t t g t   t t t   a g a    a t g g g

a g a g g g a g g g g  t g a g g g t g t g g  t g a g    a    a

a g t  a  g  g t  a  t  t g  a g g t    t  t      a a g

g   g t g g   t t g g g a g    g t g g a t    a g t g a g t g

a  g   t   a       g    t a  t  g g g  a g t t t a a 

  t t g t t g t t  a  t t g  a g a  a t  g t g a a  a  g g  

 g g    g a  g a g a a g g   a t a a t g a   t a t g t g t  

a g  t t  t a   a t g   t t t t  a g g a g  g  a g a a g g t a

  g a g  a g g g   a g g  a g g    t   t  g   g   a  

g  g  a a t g   g   g  t g   t  t  g   t    g t g  t 

a   t  a t t t  t  t t g  a g a  g g  a g t g g   t  t  t 

 a a  t g g a a g   a      a g  t    t . . .

t g a t g   g a g g a t g t g t t  g t  g a g  a t   g g a  g a

g a a g t   a t  a   t a  g t g g t  a   t a  t a t  a  t a

 t t t a g  a a a  t  a a g  a g g a g a  g g t g  a g g g  a t

a a g  g t a t  g g t a a g g t g g t  g g  a t t g   a t g g a g

a a  g a  a a a a t g g t   a  g a  t a  g a g a a  t t  a  a

a g  g a t  t g  t  a a g t g g a t  g a a a  g a   a t   a g

t  g  t g g g  g a g  g g g a g t t  g a a a a  t  g  t g g  

g g  g t   a a g g g  a g t t g g    a g t t  t   a a  t a 

 g  a   a t  g a g a a g   g    a a g t t t g t g g a a a a g

g g  a a   t  g a g g t g  t   t t t t  a    t g  a g t  

a a g a t g  g g g   a a  a a   a g a a g    t a  a  a   

a a a g a g g g  a a g a t g a t t t  g g a  a t  a a  a a g g  

t g g g a g  g t  t g g a g a a g g   g a g  a  g a a  g  g a a

t t g g    t g  g  g a g g a g  t  a t   g . . .

Input: two sequenes
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Problem: Loal alignment

g g    t t g g a g t t g a  t g t   t g  t g  t   t t g a g g

  a t t  t  a g a g a g a g g a a g t g g   t  a t t t t a a t 

 g  t t    a  a g   t t g t   t t t   a g a    a t g g g

a g a g g g a g g g g  t g a g g g t g t g g  t g a g    a    a

a g t  a  g  g t  a  t  t g  a g g t    t  t      a a g

g   g t g g   t t g g g a g    g t g g a t    a g t g a g t g

a  g   t   a       g    t a  t  g g g  a g t t t a a 

  t t g t t g t t  a  t t g  a g a  a t  g t g a a  a  g g  

 g g    g a  g a g a a g g   a t a a t g a   t a t g t g t  

a g  t t  t a   a t g   t t t t  a g g a g  g  a g a a g g t a

  g a g  a g g g   a g g  a g g    t   t  g   g   a  

g  g  a a t g   g   g  t g   t  t  g   t    g t g  t 

a   t  a t t t  t  t t g  a g a  g g  a g t g g   t  t  t 

 a a  t g g a a g   a      a g  t    t . . .

t g a t g   g a g g a t g t g t t  g t  g a g  a t   g g a  g a

g a a g t   a t  a   t a  g t g g t  a   t a  t a t  a  t a

 t t t a g  a a a  t  a a g  a g g a g a  g g t g  a g g g  a t

a a g  g t a t  g g t a a g g t g g t  g g  a t t g   a t g g a g

a a  g a  a a a a t g g t   a  g a  t a  g a g a a  t t  a  a

a g  g a t  t g  t  a a g t g g a t  g a a a  g a   a t   a g

t  g  t g g g  g a g  g g g a g t t  g a a a a  t  g  t g g  

g g  g t   a a g g g  a g t t g g    a g t t  t   a a  t a 

 g  a   a t  g a g a a g   g    a a g t t t g t g g a a a a g

g g  a a   t  g a g g t g  t   t t t t  a    t g  a g t  

a a g a t g  g g g   a a  a a   a g a a g    t a  a  a   

a a a g a g g g  a a g a t g a t t t  g g a  a t  a a  a a g g  

t g g g a g  g t  t g g a g a a g g   g a g  a  g a a  g  g a a

t t g g    t g  g  g a g g a g  t  a t   g . . .

Output: similar regions (in the form of an alignment)

CCCGACGAGAAGGCCATAATGACCTATGTGTCCAGCTTCTACCATGCCTTT

|| ||||||||| |||| ||||| ||| || || ||| || ||||

CCGGACGAGAAGTCCAT---CACCTACGTGGTCACCTACTATCACTACTTT

Insert dashes (gaps) so that orresponding bases in the same olumn.

A good alignment has many aligned mathing bases, few gaps.
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What are alignments good for?

� Orientation in large sequene databases.

Genbank has more 3 TB of whole genome sequenes.

E.g.: from whih genome (and whih part) omes a given

sequene?

� Determine funtion (e.g. of a protein).

Similar sequenes often have the same or similar funtion.

� Evolutionary studies.

Searh for homologs, sequenes whih have evolved from the same

ommon anestor.

In the ideal ase, gaps orrespond to insertions and deletions,

aligned bases to onserved bases and substitutions.

� Finding genes and other funtional elements.

These often hange slower than other sequenes.
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Sequene alignment as an optimization problem

Goal of the sequene alignment: �nd pairs of homologous bases

(oming from a ommon anestor)

Modeling phase: hoose a soring sheme suh that

� real alignments have high sore

� false positives have low sore

Optimization phase:

given two input sequenes �nd the highest soring alignment

� fous on omputational e�ieny

5



Problem formulation

Set up a soring sheme for alignments

e.g. math +1, mismath -1, gap -1

GAGAAGGCCATAATGACCTATGTGTCCAGCT

|||||| |||| ||||| ||| || ||

GAGAAGTCCAT---CACCTACGTGGTCACCT

22 mathes, 6 mismathes, 3 gaps → sore 13.

In pratie we often use more omplex soring shemes.

Problem 1: global alignment

Input: sequenes X = x1x2 . . . xn and Y = y1y2 . . . ym.

Output: alignment of X and Y with the highest sore

Problem 2: loal alignment

Input: sequenes X = x1x2 . . . xn and Y = y1y2 . . . ym.

Output: alignment of substrings xi . . . xj and yk . . . yℓ with highest

sore

6



Dynami programming for global alignment

(Needleman, Wunsh 1970)

Subproblem A[i, j]: highest sore of a global alignment of x1x2 . . . xi

a y1y2 . . . yj

One of the strings has length 0: the other string is aligned to gaps

A[0, j] = −j, A[i, 0] = −i

General ase i > 0, j > 0:

if xi = yj are aligned A[i, j] = A[i− 1, j − 1] + 1

if xi 6= yj are aligned A[i, j] = A[i− 1, j − 1]− 1

if xi is aligned to a gap A[i, j] = A[i− 1, j]− 1

if yj is aligned to a gap A[i, j] = A[i, j − 1]− 1

x1 . . . xi−1 xi x1 . . . xi−1 xi x1 . . . xi −

y1 . . . yj−1
︸ ︷︷ ︸

A[i−1,j−1]

yj
︸︷︷︸

±1

y1 . . . yj
︸ ︷︷ ︸

A[i−1,j]

−
︸︷︷︸

−1

y1 . . . yj−1
︸ ︷︷ ︸

A[i,j−1]

yj
︸︷︷︸

−1

7



Dynami programming for global alignment

Subproblem A[i, j]: highest sore of a global alignment of x1x2 . . . xi

a y1y2 . . . yj

General ase i > 0, j > 0:

if xi = yj are aligned A[i, j] = A[i− 1, j − 1] + 1

if xi 6= yj are aligned A[i, j] = A[i− 1, j − 1]− 1

if xi is aligned to a gap A[i, j] = A[i− 1, j]− 1

if yj is aligned to a gap A[i, j] = A[i, j − 1]− 1

Reurrene:

A[i, j] = max







A[i− 1, j − 1] + s(xi, yj),

A[i− 1, j]− 1,

A[i, j − 1]− 1

where s(x, y) = 1 if x = y and s(x, y) = −1 if x 6= y

8



Global alignment example

CATGTCGTA vs CAGTCCTAGA

C A G T C C T A G A

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C -1 1 0 -1 -2 -3 -4 -5 -6 -7 -8

A -2 0 2 1 0 -1 -2 -3 -4 -5 -6

T -3 -1 1 1 ?

G -4

T -5

C -6

G -7

T -8

A -9

A[i, j] = max







A[i− 1, j − 1] + s(xi, yj),

A[i− 1, j]− 1,

A[i, j − 1]− 1
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Global alignment example

CATGTCGTA vs CAGTCCTAGA

C A G T C C T A G A

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C -1 1 0 -1 -2 -3 -4 -5 -6 -7 -8

A -2 0 2 1 0 -1 -2 -3 -4 -5 -6

T -3 -1 1 1 2 1 0 -1 -2 -3 -4

G -4 -2 0 2 1 1 0 -1 -2 -1 -2

T -5 -3 -1 1 3 2 1 1 0 -1 -2

C -6 -4 -2 0 2 4 3 2 1 0 -1

G -7 -5 -3 -1 1 3 3 2 1 2 1

T -8 -6 -4 -2 0 2 2 4 3 2 1

A -9 -7 -5 -3 -1 1 1 3 5 4 3

10



How to get the alignment?

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

-1 1 0 -1 -2 -3 -4 -5 -6 -7 -8

-2 0 2 1 0 -1 -2 -3 -4 -5 -6

-3 -1 1 1 2 1 0 -1 -2 -3 -4

-4 -2 0 2 1 1 0 -1 -2 -1 -2

-5 -3 -1 1 3 2 1 1 0 -1 -2

-6 -4 -2 0 2 4 3 2 1 0 -1

-7 -5 -3 -1 1 3 3 2 1 2 1

-8 -6 -4 -2 0 2 2 4 3 2 1

-9 -7 -5 -3 -1 1 1 3 5 4 3

C

A

T

G

T

C

G

T

A

C A G T C C T A G A

CA-GTCCTAGA

CATGTCGT--A

11



Dynami programming for loal alignment

(Smith, Waterman 1981)

Subproblem A[i, j]: highest sore of a loal alignment of x1x2 . . . xi a

y1y2 . . . yj that ontains both xi and yj or is empty

One of the strings has length 0: A[0, j] = A[i, 0] = 0 (empty aln.)

General ase i > 0, j > 0:

if xi and yj are aligned A[i, j] = A[i− 1, j − 1] + s(xi, yj)

if xi is aligned to a gap A[i, j] = A[i− 1, j]− 1

if yj is aligned to a gap A[i, j] = A[i, j − 1]− 1

if xi and yj are not part of alignment with a positive sore A[i, j] = 0

Reurrene: A[i, j] = max







0,

A[i− 1, j − 1] + s(xi, yj),

A[i− 1, j]− 1,

A[i, j − 1]− 1
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Example of loal alignment

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0

0 0 2 1 0 0 0 0 1 0 1

0 0 1 1 2 1 0 1 0 0 0

0 0 0 2 1 1 0 0 0 1 0

0 0 0 1 3 2 1 1 0 0 0

0 1 0 0 2 4 3 2 1 0 0

0 0 0 1 1 3 3 2 1 2 1

0 0 0 0 2 2 2 4 3 2 1

0 0 1 0 1 1 1 3 5 4 3

C

A

T

G

T

C

G

T

A

C A G T C C T A G A

CA-GTCCTA

CATGTCGTA

13



More omplex soring shemes

Problems of the +1,−1 soring sheme:

� Is really one mismath or gap that bad ompared to a single

math?

� How to sore protein alignments?

(20 element alphabet ≈ 200 parameters)

Goal of the soring sheme:

� We want to distinguish better alignments from worse:

� Whih arrangements of gaps are more meaningful?

� We want to know if an alignment has a biologial meaning:

� Are the two sequenes homologs or unrelated?

14



Probabilisti soring sheme (the �rst attempt)

Assume X and Y are orretly aligned homologs

a = probability that two bases form a math

b = probability that two bases form a mismath

c = probability that a base is aligned to a gap

a+ b+ c = 1

Probability of alignment A:

GAGAAGGCCATAATGACCTATGTGTCCAGCT

|||||| |||| ||||| ||| || ||

GAGAAGTCCAT---CACCTACGTGGTCACCT

Pr(A) = a22b6c3

Whih alignment is more likely?

CACA

| |

CCAA

Pr(A) = a2b2
CACA-

| ||

C-CAA

Pr(A) = a3c2

15



Probabilisti soring sheme (the �rst attempt)

Take logarithm to hange multipliation into addition

we an use S.-W. or N.-W. dynami programming algorithms

Pr(A) = a22b6c3

log Pr(A) = 22 log a+ 6 log b+ 3 log c

Sore: Math: log a Mismath: log b Gap: log c

Disadvantage of this sheme:

� Sore always negative ⇒ how to do loal alignment?

� Hard to ompare di�erent pairs of sequenes

16



Soring sheme based on two probabilisti models

Compare models H and R: �log likelihood ratio�

log
Pr(X,Y |H)

Pr(X,Y |R)

� Two sequenes are homologs

⇒ likelihood ratio muh higher than 1

⇒ positive sore

� Two unrelated sequenes

⇒ likelihood ratio muh lower than 1

⇒ negative sore

17



Soring sheme based on two probabilisti models

(Ignore gaps for now)

Model H: Sequenes X and Y are orretly aligned homologs

Pr(X,Y |H) =
∏n

i=1 p(xi, yi)

p(xi, yi) : probability that alignment ontains aligned bases xi and yi

Model R: Sequenes X and Y are unrelated

Pr(X,Y |R) = (
∏n

i=1 p(xi)) (
∏n

i=1 p(yi))

p(xi) : probability of ourrene of xi in a sequene

Compare models H and R: �log likelihood ratio�

log
Pr(X,Y |H)

Pr(X,Y |R)
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Soring sheme based on two probabilisti models

Pr(X,Y |H) =
∏n

i=1 p(xi, yi)

Pr(X,Y |R) = (
∏n

i=1 p(xi)) (
∏n

i=1 p(yi))

log
Pr(X,Y |H)

Pr(X,Y |R)
= log

∏n

i=1 p(xi, yi)

(
∏n

i=1 p(xi)) (
∏n

i=1 p(yi))
=

n∑

i=1

log
p(xi, yi)

p(xi)p(yi)

sore for aligning bases x and y:

s(x, y) = log
p(x, y)

p(x)p(y)
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BLOSUM62 protein soring matrix

BLOks of aminoaid SUbstitution Matrix; Heniko�, Heniko� 1992

A R N D C Q E G H I L . . .

A 4 - 1 - 2 - 2 0 - 1 - 1 0 - 2 - 1 - 1

R - 1 5 0 - 2 - 3 1 0 - 2 0 - 3 - 2

N - 2 0 6 1 - 3 0 0 0 1 - 3 - 3

D - 2 - 2 1 6 - 3 0 2 - 1 - 1 - 3 - 4

C 0 - 3 - 3 - 3 9 - 3 - 4 - 3 - 3 - 1 - 1

Q - 1 1 0 0 - 3 5 2 - 2 0 - 3 - 2

E - 1 0 0 2 - 4 2 5 - 2 0 - 3 - 3

G 0 - 2 0 - 1 - 3 - 2 - 2 6 - 2 - 4 - 4

H - 2 0 1 - 1 - 3 0 0 - 2 8 - 3 - 3

I - 1 - 3 - 3 - 3 - 1 - 3 - 3 - 4 - 3 4 2

L - 1 - 2 - 3 - 4 - 1 - 2 - 3 - 4 - 3 2 4

. . .

� Choose biologially relevant

protein alignments (BLOCKS)

� Only pairs with identity

at most 62%

� p(x, y): how often we see amino

aids x and y aligned

� p(x): how often we see amino

aid x

� Sore for a pair of amino aids x and y: log
p(x, y)

p(x)p(y)

� multiply by a onstant and round to integers:

� to avoid too big rounding error

� integers allow faster omputation

20



More omplex soring: A�ne gap sores

CCCGACGAGAAGGCCATAATGACCTATGTGTCCAGCTTCTACCATGCCTTT

|| ||||||||| |||| ||||| ||| || || ||| || ||||

CCGGACGAGAAGTCCAT---CACCTACGTGGTCACCTACTATCACTACTTT

Several onseutive gaps likely originated in a single mutation rather

than eah independently.

Penalty for starting a gap (gap opening ost) o,

Penalty for eah next gap symbol (gap extension ost) e.

Gap of length g has penalty o+ e(g − 1).

We hoose o < e (i.e. |o| > |e|).

Default settings of blastn: math +2, mismath -3, o = −5, e = −2.

Example above: 22 mathes, 6 mismathes, 1 gap of length 3

→ sore 2 · 22− 3 · 6− 5− 2 · 2 = 16.
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Summary

� Global and loal alignments

� Needleman-Wunsh and Smith-Waterman algorithms

� Soring shemes for alignments based on omparing likelihoods

� Protein BLOSUM soring matrix

� A�ne gap penalties

Problems to think about:

1. Running time of Smith-Waterman: O(nm)

n - length of the �rst sequene

m - length of the seond sequene

Loal alignments between human and mouse?

2. We found an alignment with sore 14

Is this a good sore or is it a sore that would appear just by

hane?

22



Announements

� Submit your preferenes for journal lub papers using the form at

the website until next Wednesday, Ot. 20 22:00

� Homework 1 will be published on the website, submit until

Tuesday November 9 22:00 (pdf via Moodle, guests by e-mail to

brejova�ds.fmph.uniba.sk)

� You are are allowed to disuss homework questions with

lassmates, but do not take notes during disussions and do not

show your solutions to others. Everybody should write their

homework submission independently, do not opy from lassmates

or other soures.

� Please use MS Teams for questions regarding homeworks, quizzes

and the ourse in general.

� However, any questions involving your ideas about solving the

questions should be sent privately to instrutors by email.
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Sequene alignment 2/2

Tomá² Vina°

Otober 14 2021

Scale
chr13:

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6

2 kb
67758000 67759000 67760000 67761000 67762000 67763000

Mouse Chained Alignments

Mouse Alignment Net

chr14 + 79986k
chr13 - 75899k
chr8 - 126820k

chr1 + 36234k
chr13 - 75893k

chr13 - 75844k

2



Summary from the last leture

� Global and loal alignment problem

Input: sequenes X = x1x2 . . . xn and Y = y1y2 . . . ym.

Output: alignment of X and Y with the highest sore

or alignment of substrings xi . . . xj a yk . . . yℓ with the highest

sore

� Corret algorithms using dynami programming

� Realisti soring shemes

3



We have dynami programming, what else do we need?

Running time: O(n2) on two sequenes of length n

How muh is that in pratie?

(simple implementation, random sequenes, desktop omputer)

n time

100 0.0008s

1,000 0.08s

10,000 8s

100,000 13m (*)

1,000,000 22h (*)

10,000,000 3months (*)

100,000,000 25years (*)

We need a more e�ient algorithm, partiularly for omparative

genomis

Memory: basi implementation O(n2), but an be done in O(n)

4



Heuristi alignment

� Trade sensitivity for speed (some alignments not found)

� Redue the searh to �promising� parts of the matrix

Heuristi loal alignment

BLASTN [Altshul et al 1990℄, FASTA [Pearson 1988℄

� Find short exat mathes of length w (seeds)

� Extend hits along diagonals to ungapped alignments

� Connet alignments on nearby diagonals to gapped alignment

� Possibly optimize by dynami programming
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How to �nd short exat mathes?

� Create a ditionary of short substrings of length w from the �rst

sequene.

� Searh for all substring from the seond sequene in the ditionary

Exmple: CAGTCCTAGA vs CATGTCATA

Ditionary:

AG 2, 8

CA 1

CC 5

CT 6

GA 9

GT 3

TA 7

TC 4

Searh for:

CA → 1

AT → �

TG → �

GT → 3

TC → 4

CA → 1

AT → �

TA → 7

6



Heuristi loal alignment

Example: start from seeds of length w = 2

(in pratie we would use w = 11 or more)

C A G T C C T A G A
0 0 0 0 0 0 0 0 0 0 0

C 0 1 0 0 0 1 1 0 0 0 0
A 0 0 2 1 0 0 0 0 1 0 0
T 0 0 1 1 2 1 0 1 0 0 0
G 0 0 0 2 1 0 0 0 0 1 0
T 0 0 0 0 3 2 1 1 0 0 0
C 0 1 0 0 0 4 3 0 0 0 0
A 0 0 2 1 0 3 3 2 1 0 1
T 0 0 1 1 2 2 2 4 3 2 1
A 0 0 1 0 1 1 1 3 5 4 3

1. find hits

2. ungapped

3. gapped

7



Running time of heuristi loal alignment

Algorithm

� Find seeds (short exat mathes of length w)

� Expensive step: extend/onnet seeds to longer alignments

Random seeds of length w: not part of any high-soring alignment.

These are �ltered in the extension step, but they slow down the

program

How many random hits?

Two unrelated nuleotides math with probability 1/4

We have w mathes in a row with probability 4−w

Expeted number of false positives roughly nm4−w

Inrease of w by 1 means a 4-fold derease of spurious seeds

8



Sensitivity of heuristi loal alignment

Algorithm

� Find seeds (short exat mathes of length w)

� Expensive step: extend/onnet seeds to longer alignments

Some alignments not found: high sore but no seed of length w

Example: CA-GTCCTA

CATGTCATA

no seed of length w ≥ 4

Sensitivity: fration of real alignments ontaining a seed of length w

9



Sensitivity vs. running time

Small w

many spurious seeds, slow

Large w

many alignments not found

10



Can we estimate the sensitivity?

Assume random ungapped alignment of length L

Every position math with probability p

Sensitivity f(L, p) = Pr(alignment ontains w onseutive mathes)

0 100 200 300
alignment length L

0.0

0.2

0.4

0.6

0.8

1.0
se

ns
it

iv
it

y 
fo

r 
w

=1
1

p=0.6
p=0.7
p=0.8
p=0.9

(human-mouse: p ≈ 0.7)

11



Protein BLAST

BLOSUM62 soring matrix for proteins

A R N D C Q E G H I . . .

A 4 - 1 - 2 - 2 0 - 1 - 1 0 - 2 - 1

R - 1 5 0 - 2 - 3 1 0 - 2 0 - 3

N - 2 0 6 1 - 3 0 0 0 1 - 3

D - 2 - 2 1 6 - 3 0 2 - 1 - 1 - 3

C 0 - 3 - 3 - 3 9 - 3 - 4 - 3 - 3 - 1

Q - 1 1 0 0 - 3 5 2 - 2 0 - 3

E - 1 0 0 2 - 4 2 5 - 2 0 - 3

G 0 - 2 0 - 1 - 3 - 2 - 2 6 - 2 - 4

H - 2 0 1 - 1 - 3 0 0 - 2 8 - 3

I - 1 - 3 - 3 - 3 - 1 - 3 - 3 - 4 - 3 4

Instead of exat math of length w, protein BLAST requires 3 amino

aids with sore at least 13

Hit: N I R

N L R

6+2+5=13

Not a hit: A I L

A I L

4+4+4=12

12



Examples of software tools for various tasks

NCBI BLAST: blastn for DNA/RNA, blastp for proteins,

tblastx translates DNA to proteins and uses blastp

UCSC Blat: very fast searh for very similar sequenes, i.e. aligning

sequening reads to the genome

� uses very large values of w

� an split alignments with big gaps (aligning transripts with

introns)

13



Whole-genome alignments

For eah setion of human genome �nd losest setion from mouse,

dog, hiken, et. (see e.g. UCSC genome browser)

� Loal alignments will over protein oding exons and other

onserved parts

� Setions that diverged too muh annot be aligned

� If there was a dupliation, we need to deide whih pairs belong

together

� Synteny priniple: if two similar setions (loal alignments) are

present in the same order and orientation in two genomes, they

likely evolved from the same ommon anestor (orthologs)

14



Scale
chr15:

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6

100 kb hg38

99,650,000 99,700,000 99,750,000 99,800,000
RefSeq Genes

Mouse (Dec. 2011 (GRCm38/mm10)) Chained Alignments

Mouse (Dec. 2011 (GRCm38/mm10)) Alignment Net

MEF2A
MEF2A
MEF2A
MEF2A

MEF2A
LYSMD4
LYSMD4
LYSMD4
LYSMD4
LYSMD4
LYSMD4
LYSMD4

DNM1P46

chr7 - 65643k
chr10 - 121644k chr13 + 83592k

chr8 + 70165k
chr3 + 88156k

chr13 + 83625k
chr3 + 88158k

chr3 + 88159k
chr13 + 83633k

chr11 + 77711k
chr18 + 71204k
chr6 + 124881k

chr14 - 110385k

chr3 + 88161k
chr3 + 88162k

chr13 + 83655k
chr13 + 83656k
chr13 + 83662k

chr3 + 88168k

chr13 - 81669k
chr14 - 116122k

chr2 + 32288k

chr2 + 32305k
chr12 + 4676k

chr2 - 35985k
chr9 - 21503k

chr1 + 162011k
chr2 - 35985k
chr2 + 32312k
chr2 + 32312k
chr2 + 32312k

chr1 + 162011k
chr9 - 21504k
chr9 - 21504k

chr1 + 162011k
chr1 + 162019k

chr9 + 55128k
chr9 - 55129k
chr9 + 55149k
chr10 - 22154k
chr6 - 136401k

chr14 - 116321k
chr14 - 116209k
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Multiple sequene alignment

Running time: O(2knk) for k sequenes of length n

For general k NP-hard.

H u m a n  t   a t a g  a a t g t -  a g a g a t a g g g  a g a g  g g a t - - - - - - g g t g g t g a 

R h e s u s  t   a t g g  a a t g t -  a g a g a t a g g g  a g a g  g g a t - - - - - - g  t g g t g a 

M o u s e t t t - - t g a  a a  a - - t a g a g a  - t g a g a t a g a a a a t - - - - - - - a t g  t g a 

D o g - t     g  t a a t g t a  a a a g a t g g g g  a g - g a a g a - - a - - - - t g t g  t g a a

H o r s e - t   a  g g  a a t a  - t g g a g a t g g g g  a g a g  a g a - - a g a t - g g t g a t g a a

A r m a d i l l o  t g  a t a g a a a t  t -  a g a g a t g g g g g a a a g  a g a - - - - - - a g a  a t t  a t

O p o s s u m a t   a t g g a a a  a t -  a g a a g t g g g a g a a a t a g a a g a - - - - t g g  a a t g a -

P l a t y p u s a    g g g g a a g g g g - a a g a g g a a g g g   g g   g - - - - - - - - - - - - - - - - - -

Heuristi algorithms, e.g. CLUSTAL-W [Higgins et al., 1996℄,

MUSCLE [Edgar, 2004℄ and TBA [Blanhette et al., 2004℄.
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How to distinguish when the alignment is �real�?

Query length m. Database length n.

Alignment with sore S.

P -value: Probability that a random query of length m in a random

database of length n yields alignment of sore at least S

E-value: Expeted number of alignments with the sore of at least S

when searhing for a random query of length m in a random database

of length n

Note: P = 1− e−E
⇒ for very small values of E, P ≈ E

[Karlin and Altshul, 1990, Dembo et al., 1994℄

19



Computing P -values by simulation

� Generate a random query and a random database of length n

� Compute best loal alignment (+1/-1 sheme)

� Reord the resulting sore

� Repeat many times

0 10 20 30 40 50

0
.0

0
0

.0
5

0
.1

0
0
.1

5

Score S

P
ro

b
a

b
ili

ty

n=100 

 P-value 0.003

 S=25

0 10 20 30 40 50

0
.0

0
0

.0
5

0
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0
0
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5

Score S

P
ro

b
a

b
ili

ty

 n=200

 P-value 0.648

 S=25
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Computing P -values by simulation (ont)

0 10 20 30 40 50

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Score S

P
ro

b
a
b
ili

ty

n=100 

 P-value 0.003

 S=25

0 10 20 30 40 50

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Score S

P
ro

b
a
b
ili

ty

 n=200

 P-value 0.648

 S=25

P-value for sore 25:

How many alignments have sore 25 or higher?

(In pratie, simulations are slow, but we have mathematial estimates

of how these distributions look like.)
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Summary

� Sequene alignment is the essential bioinformatis tool

� Problem formulation: de�ning a soring sheme

� Problem solution: either slow and exat algorithms, or fast

heuristis that an miss some alignments

� There are speialized tools for various tasks related to the

sequene alignment

� Estimation of statistial signi�ane (P -values) is an important

tool in distinguishing real alignments from those that our just by

hane
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Announements

� Homework 1 is published on the website, submit until Tuesday

November 9 22:00

Journal lub: groups

� Groups published on the ourse website

� MS teams has a hannel for eah group, use it to ommuniate

within group (hat, online meetings, doument sharing)

� Group 4 has three members who do not speak Slovak,

two of them are not loated in Bratislava

1



Journal lub: meeting

� Everybody �rst reads the assigned paper individually,

then organize a group meeting, where you disuss the paper

(partiularly any portions whih you did not understand),

plan writing of the journal lub report

� The �rst group meeting should our no later than Nov. 23.

It an take plae in MS Teams or in person.

� Announe the �rst meeting at 1 day in advane

(time and loation or link) in the group hannel hat

� After the meeting, post a short summary to the group hannel:

who partiipated, what did you agree upon, any problems

� You an arrange a onsultation with us if needed.

� You do not need to report any additional meetings.

2



Journal lub report

� The main methods and results of the artile in your own words

� Understandable for students of this ourse (both omputer

sientists and biologists)

� You do not have to over the entire ontent of the artile in the

report and, onversely, you an use other resoures

� Try to express your own view of the topi, do not stritly follow

the text of the artile

� The reommended length is about 1-2 pages per person, one

oherent text

� The report should list the members of the group who have atively

partiipated. They will get the same points (the rest zero)

3



Gene �nding

Tomá² Vina°

Otober 21, 2021
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What to do with sequened and assembled genomes?

DNA:

RNA:

RNA:

RNA: protein:

transcription to RNA

RNA processing

to protein
translation

regulation

gene
replication

� protein-oding genes (today's leture)

� RNA genes

� signals for regulation of transription, spliing, et.

� pseudogenes (non-funtional opies of genes)

� sequene repeats

5



Protein synthesis and translation in Eukaryotes

DNA:

pre-mRNA:

mRNA:

protein:

transcription
- copy contiguous region of DNA

RNA splicing
- cut out introns

translation
- translate codons, triples of nucleotides,
to aminoacids

exon:
UTR (untranslated region)
coding exon

intron
intergenic region

Translation: three nuleotides (odon) → aminoaid in the protein

U G G U U U G G C U C A

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

W F G S

mRNA:

protein:

6



Human genome

� protein-oding genes

� a 20,000, over approx. 40% of genome length

� a 10 exons in eah gene

� exons over approx. 2% of genome length

� oding exons approx. 1.2%

� sequene repeats

� over approx. 49% of genome length

7



Bioinformatis problem: Gene �nding

Goal: �nd all protein-oding genes in the genome

(assemble a atalogue of all proteins)

Simplifying assumpations:

� no alternative spliing, no overlapping genes

� we are not searhing for untranslated regions (UTRs) at the

beginning and the end of the gene

8



Bioinformatis problem: Gene �nding

Input: DNA sequene

 g g t g a a a  t g  a  g a t t g t t g  t g g  t t a a a g a t a g a   a a t  a g a g t g t g t a a  g t  a

t a t t t a g  g t  t t  t a t  a t   a a t  a  t g  a  t t t a  a  a  t a t a a a t a g a g  a g  t  a

t g g g  g t a t t t g  g  t a g t g t t g g g t g t t   g  t g t g  t g t t t t t   g t  a t g g  t  g  a

 t a a g  a a a  t g  t  g g a a g t  t a  t g g t g g  a a g g  g   a  g  a a a  a g t t g g   a  t a

a g g  a g    g  a a a a g  g  t   g g   a   g g  g g  g t g a a a a a g     a   g  t a   g g 

 g g g  a   g t g g  t  t g  g  g a g a t   g   g t t a t  a g a a g t   a  t g a a  t g  t t a t t 

g t a a a  t a   t t t   a g  g   t g g t g  g  g a g a t t g  g  a g g a  t t t a a a a  a g a   t g 

g t t t   a g a g  t   g  t g t g a t g g  t  t g  a g g a g g  g t g  g a g g   t a  t t g g t a g g g 

t a t t t g a g g a  a  t a a   t g t g  g   a t   a  g   a a g  g  g t  a  t a t  a t g    a a g g

a  a t   a g  t  g    g   g  a t   g  g g a g a g a g g g  g t g a t t a  t g t g g t  t  t  t g a 

9



Bioinformatis problem: Gene �nding

Goal: mark eah base as intron/exon/intergeni

 g g t g a a a  t g  a  g a t t g t t g  t g g  t t a a a g a t a g a   a a t  a g a g t g t g t a a  g t  a

t a t t t a g  g t  t t  t a t  a t   a a t  a  t g  a  t t t a  a  a  t a t a a a t a g a g  a g  t  a

t g g g  g t a t t t g  g  t a g t g t t g g g t g t t   g  t g t g  t g t t t t t   g t  a t g g  t  g  a

 t a a g  a a a  t g  t  g g a a g t  t a  t g g t g g  a a g g  g   a  g  a a a  a g t t g g   a  t a

a g g  a g    g  a a a a g  g  t   g g   a   g g  g g  g t g a a a a a g     a   g  t a   g g 

 g g g  a   g t g g  t  t g  g  g a g a t   g   g t t a t  a g a a g t   a  t g a a  t g  t t a t t 

g t a a a  t a   t t t   a g  g   t g g t g  g  g a g a t t g  g  a g g a  t t t a a a a  a g a   t g 

g t t t   a g a g  t   g  t g t g a t g g  t  t g  a g g a g g  g t g  g a g g   t a  t t g g t a g g g 

t a t t t g a g g a  a  t a a   t g t g  g   a t   a  g   a a g  g  g t  a  t a t  a t g    a a g g

a  a t   a g  t  g    g   g  a t   g  g g a g a g a g g g  g t g a t t a  t g t g g t  t  t  t g a 

Intergenic region Intron Coding exon

Gene 1 Gene 2
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Bioinformatis problem: gene �nding

Input: DNA sequene

Goal: mark eah base as intron/exon/intergeni

� Still not a well-de�ned problem!

How to reognize a gene?

11



How to reognize a gene?

Signals at the exon boundaries:

short strings that serve as binding sites for the transription mahinery

Intergenic region Intron Coding exon

promoter
signals

start of
transcription

start of
translation

donor
site

branch
site

acceptor
site

translation
stop

AATAAA
box

polyA add.
site

Example of a signal: donor splie site

Exon Intron

ccatcccctatatttatggcagGTgaggaaagggtgggggctgggg
attcatcatcatgggtgcatcgGTgagtatctcccaggccccaatc
agaagatctaccccaccatctgGTaagtgtgtcccaccactgcccc
acagagtgagcccttcttcaagGTgggtggtgtcagggcctccccc
acgagtcctgcatgagccagatGTaaggcttgccgttgccctccct
tgcagaacctcatggtgctgagGTggggccaagcctgggccggggg
tcgatgaatttgggatcatccgGTgagagctcttcctctctcctgg
agatgacgtccgtgatgagaagGTagggggtgcaccccagtcccca
gtggagaatgagaggtgggatgGTaggtgatgccttcgaggcccag
tttcttgtggctattttaaaagGTaattcatggagaaatagaaaaa

12



How to reognize a gene?

Sequene omposition:

� di�erent k-mer frequeny in oding and non-oding regions,

� oding regions are 3-periodi,

� stop odons (TAA, TGA, TAG) appear only at the end of the last

exon.

Example: in human genome, exons are GC rih

a  g t

oding exon 0 0.26 0.26 0.32 0.16

1 0.30 0.24 0.20 0.26

2 0.17 0.32 0.31 0.20

intron 0.26 0.22 0.22 0.30

intergeni 0.27 0.23 0.23 0.27

13



Bioinformatis problem: Gene �nding

Input: DNA sequene

Goal: mark eah base as intron/exon/intergeni

� Not a well-de�ned problem!

How to reognize a gene?

� No information by itself an uniquely determine whih parts of

the sequene orrespond to genes.

� Want a soring sheme that will tell us how well a partiular

annotation orresponds to our knowledge about gene struture.

� Then we are looking for an annotation (or a segmentation of the

sequene into non-overlapping regions representing individual

genes) with the maximum sore.

� We use probabilisti models to de�ne suh soring sheme.

14



Probabilisti model of protein-oding genes

No single soure of information uniquely determines genes

Combine all soures using probablisti models

Model random DNA sequence S, random annotation A

Pr(S,A) � probability model generates pair (S,A).

Model with high probability generates pairs with properties similar to

the real genes

Using a probabilisti model: for a new sequene S �nd the most

probable annotation A = argmaxA Pr(A|S)

15



Probabilisti model of protein-oding genes

Model random DNA sequence S, random annotation A

Using a probabilisti model: for a new sequene S �nd the most

probable annotation A = argmaxA Pr(A|S)

Toy example: sequenes of length 2

Table of probabilities for 16 sequenes, 9 annotations (sums to 1)

The most probable annotation for S =aa is aa.

aa 0.008 a 0.009 ag 0.0085 . . .

aa 0 a 0 . . .

aa 0.011 . . .

aa 0

aa 0.009

aa 0

aa 0.007

aa 0

aa 0.010

16



Hidden Markov model (HMM)

Way of de�ning models for longer sequenes.

a:0.24
c:0.27
g:0.28
t:0.21

a:0.27
c:0.23
g:0.23
t:0.27

a:0.26
c:0.22
g:0.22
t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01

� Finite-state automaton, states e.g. exon, intron, intergeni

� Generates sequenes and annotations base-by-base

� In eah step, in the urrent state, randomly generate a single base

aording to the state's emmission table

� Then randomly transition to the next state aording to the

probabilities on edges (transition probabilities)

17



Hidden Markov model (HMM)

a:0.24
c:0.27
g:0.28
t:0.21

a:0.27
c:0.23
g:0.23
t:0.27

a:0.26
c:0.22
g:0.22
t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01

Assume the model starts in the blue state

Example:

Pr(a  a ) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 = 0.000017

Pr(a  a ) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 = 0.017

18



Notation

Sequene S1, . . . , Sn

Annotation A1, . . . , An

Model parameters:

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

a

0.99 0.007 0.003

0.01 0.99 0

0.001 0 0.999

e a  g t

0.24 0.27 0.28 0.21

0.26 0.22 0.22 0.30

0.27 0.23 0.23 0.27

Resulting probability: Pr(A1, . . . , An, S1, . . . , Sn) =

π(A1)e(A1, S1)
∏

n

i=2
a(Ai−1, Ai)e(Ai, Si)
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Finding genes with HMMs

model

(HMM)
random DNA sequence S, random annotation A

(similar to real DNA)

Pr(S,A) � probability that the model generates pair (S,A).

� Determine states and transitions of the model: by hand based

on your knowledge about the gene struture

� Parameter training: emission and transition probabilities are

determined based on the real sequenes with known genes

(training set)

� Use: for a new sequene S, �nd the most probable annotation

A = argmaxA Pr(A|S)

Viterbi algorithm in O(nm2) (dynami programming)

20



Gene �nding HMM: 3-periodi exons

three nuleotides (odon) → aminoaid in the protein

U G G U U U G G C U C A

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

W F G S

mRNA:

protein:

Instead of a single state for exon, use three states in a yle

20 1

a 0 1 2

0 0 0 0

1 0 0 0

2 0 0

0

0 0 0

Pr(Ai|Ai−1)
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Emission probabilities of new states will di�er

a:0.24
c:0.27
g:0.28
t:0.21

a:0.27
c:0.23
g:0.23
t:0.27

a:0.26
c:0.22
g:0.22
t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01
20 1

e a  g t

0.24 0.27 0.28 0.21

0.26 0.22 0.22 0.30

0.27 0.23 0.23 0.27

e a  g t

0 0.26 0.26 0.32 0.16

1 0.30 0.24 0.20 0.26

2 0.17 0.32 0.31 0.20

0.26 0.22 0.22 0.30

0.27 0.23 0.23 0.27
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Gene �nding HMM: onsistent odons

Intron an interrupt a odon in the middle, but we must ontinue

where we left o�.

T G G T G T T A G T T T C A

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

W F S

DNA:

protein:

20 1

0 1 2
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Gene �nding HMM: signals

Exón Intrón

ccatcccctatatttatggcagGTgaggaaagggtgggggctgggg
attcatcatcatgggtgcatcgGTgagtatctcccaggccccaatc
agaagatctaccccaccatctgGTaagtgtgtcccaccactgcccc
acagagtgagcccttcttcaagGTgggtggtgtcagggcctccccc
acgagtcctgcatgagccagatGTaaggcttgccgttgccctccct
tgcagaacctcatggtgctgagGTggggccaagcctgggccggggg
tcgatgaatttgggatcatccgGTgagagctcttcctctctcctgg
agatgacgtccgtgatgagaagGTagggggtgcaccccagtcccca
gtggagaatgagaggtgggatgGTaggtgatgccttcgaggcccag
tttcttgtggctattttaaaagGTaattcatggagaaatagaaaaa

Add a sequene of states between exon and intron:

d1 d2 d3 d4 d5 d6 d7 d8 d9

24



Gene �nding HMM: a omplete model

translation start

donor4
acceptor4

donor5
intron5

acceptor5

donor3
intron3

acceptor3

acceptor0
intron0

donor0

acceptor1
intron1

donor1

acceptor2
intron2

donor2

translation start

Reverse strand Forward strand

translation stop translation stop

intron4

exon intergenic exon

25



Higher order states

Order 0: emission table e ontains Pr(Si|Ai)

Order 1: e ontains Pr(Si|Ai, Si−1)

Ai Si−1 a  g t

a 0.24 0.23 0.34 0.19

 0.30 0.31 0.13 0.26

g 0.27 0.28 0.28 0.17

t 0.13 0.28 0.38 0.21

a 0.30 0.18 0.27 0.25

 0.32 0.28 0.06 0.35

g 0.27 0.22 0.27 0.24

t 0.20 0.21 0.26 0.33

. . .

For exons, introns, et. use orders 4-5.
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Experimental veri�ation of predited genes

Transription and spliing

� RNA-Seq: sequening of all mRNAs extrated from the ell

� RT PCR: targeted veri�ation of a spei� gene using spei�ally

designed primers

Problems: di�ult to �nd genes that are expressed under speial

onditions, i.e. embryoni development

genomi DNA ontamination, non-unique mapping to the genome

DNA:

mRNA:

PCR product:

Primers:

27



Experimental veri�ation of predited genes

Translation, existene of the protein

� Mass spetrometry

� Detetion based on antibodies

� Other methods spei� to individual proteins

28



Examples of gene �nging programs

Based only on DNA sequene:

HMMGene [Krogh, 1997℄, Gensan [Burge and Karlin, 1997℄,

GeneZilla [Majoros et al., 2004℄, ExonHunter [Brejová et al., 2005℄,

Augustus [Stanke and Waak, 2003℄

Prokaryotes:

GeneMark [Lukashin and Borodovsky, 1998℄, Glimmer

[Delher et al., 1999℄.
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Examples of gene �nding programs

Comparison of multiple sequenes:

Twinsan [Korf et al., 2001℄, Exoniphy [Siepel and Haussler, 2004℄,

N-SCAN [Gross and Brent, 2006℄

(Twinsan extended to multiple genomes).

Integration of additional information: (RNA-seq, proteins from

related genomes, et.)

ExonHunter [Brejová et al., 2005℄, Augustus [Stanke et al., 2006℄,

Jigsaw [Allen and Salzberg, 2005℄, Fgenesh++ [Solovyev et al., 2006℄.
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Limitations of gene �nders

� Alternative spliing: one gene an produe di�erent mRNAs; gene

�nders typially only �nd one

Alternative donor or acceptor:

Retained intron: Skipped exon:

Mutually exclusive exons:

� Overlapping genes (inluding genes in introns)

� Atypial genes (unusual signal, short or long exons or introns)

� Untranslated regions (UTR) are di�ult
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Gene �nders often make errors

Results on human genome: [Guigo et al 2006℄

20% genes, 60% exons orret based on DNA

35% genes, 65% exóns orret based on omparisons

70% génes, 85% exóns orret with additional info

Scale
chr2:

10 kb

149220000 149225000 149230000 149235000 149240000 149245000 149250000 149255000 149260000
RefSeq Genes

Augustus Gene Predictions Using Hints

Augustus De Novo Gene Predictions

Augustus Ab Initio Gene Predictions

EPC2

g8922.t1

g7490.t1

g8986.t1

Scale
chr2:

50 bases

149255700 149255750 149255800
RefSeq Genes

Augustus Gene Predictions Using Hints

Augustus De Novo Gene Predictions

Augustus Ab Initio Gene Predictions

EPC2

V T G G I T E E Q F Q T H Q Q Q L V Q M Q R Q Q L A Q L Q Q K Q Q S Q H S S Q Q T H P K A Qg8922.t1

G G I T E E Q F Q T H Q Q Q L V Q M Q R Q Q L A Q L Q Q K Q Q S Q H S S Q Q T H P K A Qg7490.t1

V T G G I T E E Q F Q T H Q Q Q L V Q M Q R Q Q L A Q L Q Q K Q Q S Q H S S Q Q T H P K A Qg8986.t1
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How many genes in human genome?

Before 2001: 50 000�140 000 genes

2001: draft human genome: 30 000�40 000 genes

2004: ompleted human genome: 20 000�25 000 genes

2007: Ensembl, RefSeq, VEGA atalog: 24 500 genes

[Clamp a kol. 2007℄ laims only 20 500 orret

Are there genes about whih we don't know yet?

2010: RefSeq 22 333 genes

unertainty of ±1000 [Pertea, Salzberg 2010℄

Individuals an di�er in tens of genes

2012: Projet ENCODE estimates 20 687 protein oding genes,

on average 6 transripts per gene,

plus 8 800 short and 9 600 long RNA genes

33



Summary

� Newly sequened genomes need to be annotated:

determine funtions of individual segments of the genome

� Example of annotation: �nding genes that ode for proteins

� Hidden Markov models are suitable for gene �nding

� Models make a lot of errors, but they at least give us the basi

understanding of loation an number of genes, we an study their

funtion
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Announements

� Homework 1 is due Tuesday November 9 22:00

disussion regarding questions in MS Teams

� Work on the journal lub

(read the paper, plan the meeting no later than Nov. 23)
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Evolution and Phylogeneti Trees

Bro¬a Brejová

Otober 28, 2021

pig
hippopotamus
camel
cow
whale

OR

whale
hippopotamus
cow
pig
camel
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Phylogeneti tree reonstrution (fylogenetiký strom)

Input:

m aligned sequenes,

eah of length n

human C A G T T A

elf A A T A G A

Gollum C C G A G A

hobbit C C G T T C

or A A T T T A

Output:

tree representing

their evolutionary history

gollum hobbit human elf orc

Newik format:

(((gollum,hobbit),human),(elf,or))
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Rooted and unrooted trees

Unrooted tree (nezakorenený strom)

camel

hippo pigcow

whale b

a

x

Two out of seven possible rooted versions of the tree

whale
hippo
pig
camel
cow

whale
hippo
pig
camel
cow

Most methods reonstrut unrooted trees
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Rooting a tree using an outgroup

Add outgroup (dog) to the unrooted tree

whale

hippo cow pig dog

camel

whale
hippo
cow
pig
camel
dog
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Parsimony priniple and maximum parsimony (úspornos´)

Input: (aligned) sequenes of several extant speies.

Task: Find a phylogeneti tree that explains the data by using the

minimum number of evolutionary events.

Here: Evolutionary event = single base mutation

Subtask: For a given phylogeneti tree, �nd anestral sequenes

that require the minimum number of events (sore of the tree)

gollum AGA

hobbit TAA

human TCC

elf ACA

or TCA

gollum hobbit human elf orc

→

gollum

AGA

hobbit

TAA

human

TCC

elf

ACA

orc

TCA

TAA TCA

TCA

TCA

5 hanges
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Computing ost of a given phylogeneti tree

Use dynami programming (separately for eah alignment olumn).

For eah internal vertex u and symbol x:

Nu,x: how many events are required in the subtree of u, assuming that

the symbol in u is x?

Nu,x = miny{Nv,y + [x 6= y]}+minz{Nw,z + [x 6= z]}

u

v w

x

y z

gollum
A

hobbit
T

human
T

elf
A

orc
T

A:1,T:1 A:1,T:1

A:2,T:1

A:3,T:2

* *

Time: O(m)

Repeat for eah alignment olumn: O(mn)
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What we have: ompute the ost of a partiular tree

gollum AGA

hobbit TAA

human TCC

elf ACA

or TCA

gollum hobbit human elf orc

→
gollum

AGA

hobbit

TAA

human

TCC

elf

ACA

orc

TCA

TAA TCA

TCA

TCA

5 hanges

What we want: Find the tree with the smallest ost

gollum AGA

hobbit TAA

human TCC

elf ACA

or TCA

→
gollum

AGA

hobbit

TAA

human

TCC

elf

ACA

orc

TCA

TAA TCA

TCA

TCA

8



Finding the most parsimonious tree

NP-hard problem

Trivial algorithm: try all possible trees.

For m speies 1 · 3 · 5 · · · (2m− 5) = (2m− 5)!!

E.g. for 10 speies a 2 mil., for 20 speies 2 · 1020

Heuristi searh:

� Start with some �sensible� tree

� Explore similar trees by using e.g. �subtree pruning and regraft�:

9



Neighbour joining (metóda spájania susedov)

� We throw away �details� of whih mutations happened

� Summarize by a distane matrix Dij

Example:

human C A G T T A

elf A A T A G A

gollum C C G A G A

hobbit C C G T T C

or A A T T T A

hu e h ho o

human 0 4 3 2 2

elf 4 0 3 6 2

gollum 3 3 0 3 5

hobbit 2 6 3 0 4

or 2 2 5 4 0

10



Idea of neighbour joining

Assume that the distanes Di,j orrespond to the real distanes in the

tree (they are additive)

gollum

3

hobbit

2

human

5

elf

1

orc

2

1 7

3

gollum hobbit human elf or

gollum 0 5 9 15 16

hobbit 5 0 8 14 15

human 9 8 0 16 17

elf 15 14 16 0 3

or 16 15 17 3 0

D
hobbit,human

= 2 + 1 + 5 = 8

11



Idea of neighbour joining

� Assume that the distanes Di,j orrespond to the real distanes in

the tree (they are additive)

� Find two leaves i and j, for whih we an say with ertainty,

that they have the same parent in the tree

� Join i and j and replae them with a parent node k with new

distanes to eah other node ℓ:

Dk,ℓ =
Di,ℓ +Dj,ℓ −Di,j

2

12



How to �nd out whih two leaves should be joined?

Why not two losest ones?

1

A

1

C

4

B

1

D

4

A B C D

A - 3 5 6

B 3 - 6 5

C 5 6 - 9

D 6 5 9 -

Choose leaves i, j minimizing:

Li,j = (m− 2)Di,j −
∑

k 6=i

Di,k

︸ ︷︷ ︸

ri

−
∑

k 6=j

Dj,k

︸ ︷︷ ︸

rj

m: the number of leaves

13



Connet leaves i, j, whih minimize the following quantity:

Li,j = (m− 2)Di,j −
∑

k 6=i

Di,k

︸ ︷︷ ︸

ri

−
∑

k 6=j

Dj,k

︸ ︷︷ ︸

rj

D L new D

g ho hu e o ri

g 0 5 9 15 16 45

ho 5 0 8 14 15 42

hu 9 8 0 16 17 50

e 15 14 16 0 3 48

o 16 15 17 3 0 51

g ho hu e o

g . -72 -68 -58 -48

ho -72 . -68 -48 -48

hu -68 -68 . -50 -50

e -58 -48 -50 . -90

o -48 -48 -50 -90 .

g ho hu e+o

g 0 5 9 14

ho 5 0 8 13

hu 9 8 0 15

e+o 14 13 15 0

Running time of neighbor joining: O(m3) (m: number of leaves)

In 2009 a O(m2) version was developed (Elias and Lagergren)

14



Neighbour joining: summary

� If the distane matrix is additive and orresponds to the real

evolutionary distanes then neighbour joining �nds the orret tree

� Longer sequenes ⇒ better distane estimates ⇒ orret trees

� How to ompute �real� evolutionary distanes?

Counting di�erenes is not enough

human C A G T T A

elf A A T A G A

gollum C C G A G A

hobbit C C G T T C

or A A T T T A

hu e g ho o

human 0 4 3 2 2

elf 4 0 3 6 2

gollum 3 3 0 3 5

hobbit 2 6 3 0 4

or 2 2 5 4 0

15



Problems with estimating distanes

� One base may mutate multiple times during evolution (possibly

even bak to original base)

� When ounting di�erenes we see at most one hange at eah

position ⇒ we underestimate the real distane

� We want a orretion to estimate the real number of mutations

that have ourred

16



Jukes-Cantor substitution model

Probability that base A hanges to C in time t:

Pr(Xt0+t = C |Xt0 = A) = 1

4
(1− e−

4

3
αt)

α: mutation rate (the number of substitutions per unit of time)

Expeted number of observed hanges per base in time t:

D(t) = Pr(Xt0+t 6= Xt0) =
3

4
(1− e−

4

3
αt)

Branch length (time)

O
b

s
e

rv
e

d
 d

i�
e

re
n

c
e

s

0.0 2.50.471

0
.0

0
0

.3
5

0
.7

5

17



Bak to distanes in neighbor joining

Branch length (time)

O
b
s
e
rv

e
d
 d

i�
e
re

n
c
e
s

0.0 2.50.471

0
.0

0
0
.3

5
0
.7

5

� Using this model, we an orret observed distanes

D =
3

4
(1− e−

4

3
αt) ⇒ αt = −

3

4
ln(1−

4

3
D)

� Next week: more omplex models of evolution
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Maximum likelihood trees (najvierohodnej²ie stromy)

A phylogeneti tree with branh lengths an be viewed

as a simple generative model

gollum

Xg

t5

hobbit
Xb

t6

human
Xm

t4

elf
Xe

t7

orc
Xo

t8

Xgb

t3

Xeo

t2

Xgbm

t1

Xroot

→

gollum

Xg=A

t5

hobbit
Xb=A

t6

human
Xm=G

t4

elf
Xe=C

t7

orc
Xo=C

t8

Xgb=A

t3

Xeo=C

t2

Xgbm=A

t1

Xroot=A

Probability that it generates partiular bases in nodes:

Pr(Xg=A,Xb=A,Xm=G,Xe=C,Xo=C,Xgb=A,

Xgbm=A,Xeo=C,Xroot=A)

= Pr(Xroot=A) · Pr(A |A, t1) · Pr(C |A, t2) · Pr(A |A, t3) ·

Pr(G |A, t4) · Pr(A |A, t5) · Pr(A |A, t6) · Pr(C |C, t7) · Pr(C |C, t8)

Pr(C|A, t2) is a abbreviation of Pr(Xeo = C|Xroot = A), J.-C. model

19



We an ompute (produt):

gollum

Xg=A

t5

hobbit
Xb=A

t6

human
Xm=G

t4

elf
Xe=C

t7

orc
Xo=C

t8

Xgb=A

t3

Xeo=C

t2

Xgbm=A

t1

Xroot=A

We want to ompute

tree likelihood:

gollum

Xg=A

t5

hobbit
Xb=A

t6

human
Xm=G

t4

elf
Xe=C

t7

orc
Xo=C

t8

Xgb=?

t3

Xeo=?

t2

Xgbm=?

t1

Xroot=?

Likelihood of a tree (vierohodnos´ stromu):

Pr(Xg=A,Xb=A,Xm=G,Xe=C,Xo=C)

Add up probabilities of all letter ombinations in anestors Xgb, Xgbm,

Xeo, Xroot

Compute using Felsenstein algorithm

(simple dynami programming similar to the parsimony)

For a given alignment, tree and branh lengths

we an ompute likelihood in O(nm) time

20



How to �nd the tree with the highest likelihood?

� Again NP-hard problem ;

ompliated beause we also need branh lengths

� Typial heuristi algorithm:

� Start with a �reasonable� tree

� Compute its likelihood

* Start with �reasonable� branh lengths

* Compute likelihood using these branh lengths

* Iteratively improve branh lengths to improve the likelihood

(e.g. gradient desent)

� Explore �similar� trees to improve likelihood

(as with parsimony).

21



Consisteny of algorithms for phylogeny

� �Well-behaved� algorithms: if the length of the sequenes n

inreases, the answer should get loser to the orret answer.

� The algorithm for phylogeny is onsistent, if the probability of

obtaining the orret tree onverges to 1 with n → ∞.

22



Algorithm omparison

Complexity Consisteny Data utilization

Parsimony NP-hard NO omplete sequenes

Neighbor Joining O(m3) YES distanes only

Likelihood NP-hard YES omplete sequenes
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Soures of data for phylogeneti trees

Some speial sequenes are often used

(e.g. ribosomal RNA genes, mitohondrial genome)

What about using DNA sequenes of other genes?

� Choose a suitable gene

� Find its homologs in other speies

� Use these to onstrut the tree

(DNA sequenes or proteins)

Problem: genes an be dupliated and lost in evolution

24



History of a dupliated gene

Example: speies a, b, c, genes a1, a2, a3, b1, b2, c1, c2

a1 a2 a3 b1 b2 c1 c2 a1 a2 b1 c1 c2a3 b2 a b c

history diagram gene tree G species tree S

Duplication
Speciation a− (b, c)

Speciation b− c
Duplication a1 − a2

Duplication c1 − c2

Deletion

History Gene tree Species tree

genome a genome b genome c

� Homologs: similar sequenes evolved from a ommon anestor

� Orthologs: losest ommon anestor is a speiation

(e.g. pairs of genes a1 − b1, a2 − b1)

� Paralogs: losest ommon anestor is a dupliation

(e.g. pairs of genes a1 − a2, a1 − b2)

25



A more omplex example of gene dupliation:

M04
M03
M07
M06
M01
M08
M02
M05

P04
P14
P13
P02
P08
P10
P07
P01
P11
P06
P15
P03

H33
H07
H37
H30
H12
H21
H16
H36
H29
H02
H35
H28
H05
H01
H32
H08
H25
H38
H31
H23
H14
H10
H34
H27
H06
H03

Macaca 
mulatta

Pan 
troglodytes

Homo 
sapiens

a

e

d

c

b
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Summary

Substitution models allow us to:

� estimate real evolutionary distane (the number of substitutions)

from the observed di�erene ount between two sequenes

� ompute the probability that we observe a partiular nuleotide

hange over time t

Three methods for phylogeny inferene:

� Parsimony

� Neighbour joining

� Maximum likelihood

Gene trees and speies trees, ompliations in phylogeny reonstrution
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Announements

� Homework 1 is due next Tuesday, November 9 22:00

submit in Moodle, guests by email to brejovads.fmph.uniba.sk

disussion regarding questions in MS Teams

� Work on the journal lub

(read the paper, plan the meeting no later than Nov. 23)

� Next week Bratislava in the red zone

we will try to keep the possibility of in-person lasses

1



Comparative Genomis

Tomá² Vina°

November 4, 2021
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Comparative genomis (komparatívna genomika)

� Genome evolution:

� Single point mutations (this leture)

� Short insertions and deletions

� Large-sale events: rearrangements and dupliations

� Mutations aording to their e�et:

� Neutral

� Deleterious (²kodlivé)

⇒ purifying seletion (puri�ka£ný výber)

� Advantageous (prospe²né)

⇒ positive seletion (pozitívny výber)

� By omparing several genomes,

�nd regions that evolve in an unusual way

(e.g. onserving an important funtion, evolving a new funtion)

3



Comparative genomis

� Start with multiple alignment of several genomes

(aligned sites should have originated from the same anestral

sequene)

Human AGTGGCTGCCAGGCTG---GGATGCTGAGGCCTTGTTTGCAGGGAGGT

Rhesus AGTGGCTGCCAGGCTG---GGTTGCTGAGGCCTTGTTTGCCGGGAGGT

Mouse GGTGGCTGCCGGGCTG---GGTGGCTGAGGCCTTGTTGGTGGGGTGGT

Dog AGTGGCTGCCCGGCTG---GGTGGCTGAGGCCTTATTTGCAGGGAGGT

Horse GATGGCTGCCGGGCTG---GGCTGCCGAGGCCTTGTTCGTGGGGAGGT

Armadillo AGTGGCTGCCGGGCTG---GGAGGCCAAGGCCTTGTTCGCGGGCAGGT

Chiken AGTGGCTGCCAGTCTGCGCCGTGGCCGACGTCTTGCTCGGGGGAAGGT

X. tropialis AATGGCTTCCATTTTGTGCCGCTGCTGAGGTCTTGTTCTGGGGAAGAT

� Methods: Combine tehniques for sequene annotation (HMMs)

and evolutionary models
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Appliation 1: Finding funtional elements of the genomes

Consequenes of purifying seletion

� Important funtional sequenes are likely to be onserved: they

appear to evolve slower

� Non-funtional sequenes evolve faster

� Example: protein oding genes in humans and mouse

� oding regions: 85% identity (98% of their total length aligned)

� introns: 69% identity (48% of their total length aligned)

� Task: �nd well-onserved sequenes between organisms

� Majority of onserved sequenes will orrespond to known

funtional elements (oding genes, regulation sequenes, et.)

� Conserved sequenes that do not overlap known funtional

elements: interesting objets for further researh

5



PhastCons: detetion of onserved sequenes

Phylogeneti HMM:

ombination of an HMM and a phylogeneti tree

Soure: [Siepel et al., 2005℄

� Two states: onserved and

neutral

� Eah state emits a whole

olumn of a sequene

alignment

� Conserved sequenes have

shorter tree branhes,

ausing less sequene di-

vergene

6



How to use phylogeneti HMMs

� The model gives a probability distribution over all possible

alignments and annotations

(here: annotation = markup of onserved / neutral regions)

� For a given alignment, we are looking for the annotation that

would maximize this probability

� Can be done e�iently

(ombination of the Viterbi and Felsenstein algorithms)

chr22:

RefSeq Genes

Mammal Cons

Rhesus
Mouse

Dog
Horse

Armadillo
Opossum
Platypus

Lizard
Chicken

X_tropicalis
Stickleback

20645000 20650000 20655000 20660000 20665000
RefSeq Genes

Vertebrate Multiz Alignment & PhastCons Conservation (28 Species)
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Results of PhastCons appliation to four whole genomes

Alignment of human, mouse, hiken, fugu

Soure: [Siepel et al., 2005℄

8



Phylogeneti HMMs for gene �nding

� Use states from a typial gene �nder

� Eah state has a separate evolutionary model

(rate matrix, branh lengths)

� Mutation frequenies in oding regions are three-periodi;

this helps to �nd genes

How muh we an improve on gene �nding results?

Exons Genes

Program sn sp sn sp

AUGUSTUS (1 genome) 52% 63% 24% 17%

NSCAN (alignment) 68% 82% 35% 37%

Guigo et al 2006, 1% of the human genome

9



Geneti ode

Ala / A GCT, GCC, GCA, GCG Leu / L TTA, TTG, CTT, CTC, CTA, CTG

Arg / R CGT, CGC, CGA, CGG, AGA, AGG Lys / K AAA, AAG
Asn / N AAT, AAC Met / M ATG
Asp / D GAT, GAC Phe / F TTT, TTC
Cys / C TGT, TGC Pro / P CCT, CCC, CCA, CCG
Gln / Q CAA, CAG Ser / S TCT, TCC, TCA, TCG, AGT, AGC

Glu / E GAA, GAG Thr / T ACT, ACC, ACA, ACG
Gly / G GGT, GGC, GGA, GGG Trp / W TGG
His / H CAT, CAC Tyr / Y TAT, TAC
Ile / I ATT, ATC, ATA Val / V GTT, GTC, GTA, GTG
START ATG STOP TAA, TGA, TAG

10



Appliation 2: Deteting positive seletion in protein oding

genes

� Positive seletion: proess that helps to �x advantageous

mutations in a genome

� Unusually high number of mutations that an lead to hange of

funtion

� Mutations in protein oding genes:

� Synonymous: do not hange enoded amino aid

e.g. ACA (Thr) → ACT (Thr)

� Nonsynonymous: hange the amino aid

e.g. ACA (Thr) → AAA (Lys)

� We reate a probabilisti model of evolution distinguishing

synonymous and nonsynonymous mutations ⇒ identi�ation of

sequenes with unusually high fration of nonsynonymous

mutations

11



From Jukes-Cantor to more general substitution models

� Jukes-Cantor assumes all mutations are equally probable

� In general µxy is the substitution rate from base x to base y

� Substitution rate matrix (matia rýhlostí)















−µA µAC µAG µAT

µCA −µC µCG µCT

µGA µGC −µG µGT

µTA µTC µTG −µT
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−µA µAC µAG µAT

µCA −µC µCG µCT

µGA µGC −µG µGT

µTA µTC µTG −µT















For given time interval t, we an ompute probability of eah possible

substitution (transition probabilities):

Pr(X = C |Y = A, t)

13



Dereasing the number of parameters � HKY model

Hasegawa, Kishino and Yano [Hasegawa et al., 1985℄















−µA βπC απG βπT

βπA −µC βπG απT

απA βπC −µG βπT

βπA απC βπG −µT















µx,y =







απy if x ⇔ y is transition

βπy if x ⇔ y is transversion

� frequenies πA, πC , πG, πT

(equilibrium, do not hange over time)

� transition rate (rýhlos´ tranzíií) α: C ⇔ T,A ⇔ G

� transversion rate (rýhlos´ tranzverzií) β: {C, T} ⇔ {A,G}

� Only four parameters: πA, πC , πG, κ = α/β
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Codon substitution models

Rate matries on odons rather than single nuleotides

Rate of substitution from odon i to odon j:

µi,j =







































0, if i, j di�er at > 1 positions,

απj , synonymous transitions,

βπj , synonymous transversions,

ωαπj , nonsynonymous transitions,

ωβπj , nonsynonymous transversions.

Example: µAAC,GGC = 0, µCTA,CTT = βπCTT ,

µCTA,CCA = ωαπCCA

Parameters: Codon frequenies πj , ω, κ = α/β

Seletion: neutral evolution ω = 1, positive seletion ω > 1,

purifying seletion ω < 1

15



Appliation of odon substitution models

F V I H D S E G D G E C M Q E

human TTT GTG ATC CAC GAC TCC GAG GGG GAC GGC GAG TGC ATG CAG GAG

marmoset TTT GTG ATC CAC GAG AAC AAC AAG GAC GGC GAG TGC ATG CAG GAT

F V I H E N N K D G E C M Q D

� Using whole genomes, estimate basi model parameters

πA, πC , πG, πT , κ

� For a given ω and t, we an ompute likelihood (vierohodnos´)

L(ω, t) = Pr(H,M |ω, t)

� We an observe how L(ω) = maxt L(ω, t) hanges for di�erent

values of ω

16
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Likelihood-ratio test (test pomerov vierohodností)

� Even if L(ω) ahieves maximum for ω > 1,

this an be aused by a statistial variantion in the data

⇒ we need a statistial test

� Compute likelihood LA = maxω<1 L(ω)

� Compute likelihood LB = maxω L(ω) (no restrition on ω)

� Always LB ≥ LA

� If real ω < 1, then LA ≈ LB (null hypothesis)

we are interested in ases LB >> LA

⇒ the gene is under positive seletion (alt. hypothesis)

Assuming ω < 1, we have 2 log(LB/LA) ≈ χ2

1

⇒ we an assign P-value to the null hypothesis ω < 1

18



Deteting positive seletion in protein oding genes (summary)

� Align sequenes of the same gene from two speies

(at the odon level)

� Estimate basi parameters of the odon model using whole

genome data

� Parameter ω models seletion

� Compute likelihoods LA = maxω<1 L(ω)

and LB = maxω L(ω)

� Using statistis 2 log(LB/LA), assign P-value to the null

hypothesis ω < 1

� Genes with small P-values are under the positive seletion

19



�Simple� extension to multiple genomes

Pr(A,H,C,M |ω, tH , tC , tM ) =

πA · Pr(H |A, tH) · Pr(C |A, tC) · Pr(M |A, tM )

Anestral sequenes are not known:

Pr(H,C,M |ω, tH , tC , tM ) =
∑

A Pr(A,H,C,M |ω, tH , tC , tM )

tM

tH tC

human chimp

codon M

codon A

macaque

ancestor

codon H codon C

Likelihood ω:

L(ω) = maxtH ,tC ,tM Pr(H,C,M |ω, tH , tC , tM )

� This likelihood an be omputed e.g. by PAML software

� There are also more omplex models,

e.g. with ω varying within a gene

20
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Funtional ategories enrihed for positively seleted genes

Defense: ellular defense response, antigen proessing and presentation, response to

virus, response to baterium

Immunity: adaptive immune response, adaptive immune response somati reomb,

lymphoyte mediated immunity, immunoglobulin mediated immune response, B ell

mediated immunity, innate immune response, omplement ativation alternative pathway,

regulation of immune system proess, positive regulation of immune response, humoral

immune response, omplement ativation lassial pathway, humoral immune response

irulating immunoglob, omplement ativation, ativation of plasma proteins mute in�am

resp, akute in�ammatory response, response to wounding

Sensory pereption: sensory pereption of taste, G-protein oupled reeptor protein

signaling pathway, neurologial proess, sensory pereption of hemial stimulus, sensory

pereption of smell
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Adding genomes helps to improve power of the tests

 0
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 0.5  1  2  4
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w
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’HumanChimp200’
’HumanChimp500’

’HumanChimpMacaque200’
’HumanChimpMacaque500’
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Positive seletion in dupliated genes

24



Summary

� Natural seletion plays an important role in the evolution

� Purifying seletion:

� Conserved regions are likely to have some funtion

� To �nd genes, we onsider also typial odon mutations

� Positive seletion:

� Positive seletion in genes auses high fration of

nonsynonymous hanges (evolution at the protein level)

� Dupliated genes are more often under positive seletion

� Hunt ontinues: we want to �nd genes ausing human-spei�

features

� Methods: substitution models, phylogeneti HMMs, likelihood

ratio tests
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Announements

� Homework 2 will be published today or tomorrow

� Homework 1 marks will eventually appear in Moodle

� Journal lub meetings:

group 4 done, group 2 agreed date,

group 5 ??, group 6 looking for date
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Regulation of Gene Expression

Bro¬a Brejová

November 11, 2021

2



Reall: What information is stored in DNA?

Genes: Reipes for synthesis of proteins and funtional RNAs.

Regulation of their expression: when and how muh to synthesize

DNA:

RNA:

RNA:

RNA: protein:

transcription to RNA

RNA processing

to protein
translation

regulation

gene
replication

Regulation at the level of transription, proessing, translation,

posttranslational modi�ations, . . .
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Goals

� Determine under whih onditions a gene is expressed

(related to gene funtion)

� Whih genes regulate it

� Details of the regulatory mehanism

(binding sites, expression levels,. . . )
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Tehnology: expression array, miroarray

known
genes

complementary
sequences hybridizes

gene 1 gene 2 gene 3

+

RNA sample

scan intensity

Measuring the amount of mRNA present in the sample for many

genes at the same time.

Repeated under di�erent onditions.
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Tehnology: RNA-seq

Sequening RNA extrated from the sample by NGS tehnologies,

mapping reads to the genome.

The depth of overage orresponds to the expression level

RefSeq Genes

Burge Lab RNA-seq 32mer Reads from Brain

Burge Lab RNA-seq 32mer Reads from Brain, Raw Signal

SON
SON
SON

RNA-seq Brain Sig

Example from the UCSC genome browser
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Example of expression array data

Ratio of gene expression in sample and ontrol fg/bg

15min 30min 1h 2h 4h . . .

W95909 0.72 0.1 0.57 1.08 0.66

AA045003 1.58 1.05 1.15 1.22 0.54

AA044605 1.1 0.97 1 0.9 0.67

W88572 0.97 1 0.85 0.84 0.72

AA029909 1.21 1.29 1.08 0.89 0.88

AA059077 1.45 1.44 1.12 1.1 1.15

. . .

Iyer et al 1999 The Transriptional Program in the Response of Human

Fibroblasts to Serum

Fibroblasts: ells synthesizing omponents of extraellular matrix.

To divide, they need growth fators added as �fetal bovine serum�.
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Visualization

Red: fg>bg

Green: fg<bg

517 genes (out of 8600)

19 experiments
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This leture: di�erent type of data

Other letures in this ourse: work with sequenes

� genome assembly

� sequene alignment

� gene �nding

� fylogeneti trees, population and omparative genomis

� struture and funtion of proteins and RNA

Today: table of numbers

� typial data in statistis

� we an use general methods of statistis and mahine learning

9



The �rst set of problems: preproessing data

� Read intensity from miroarray images, detet invalid

measurements

� Data aggregation from multiple measurements per gene

� Use of ontrol probes

� Normalization to obtain data omparable aross experiments

Miroarray measurements are very noisy, many soures of errors

A simple result:

list of genes highly underexpressed/overexpressed

e.g. fg/bg> 2, or fg/bg< 0.5

often only these genes used for further analysis

10



Clustering (zhlukovanie)

Goal: �nd groups of genes with similar expression pro�les.

If many genes in the group have the same funtion,

the remaining genes may partiipate as well

Measuring pro�le similarity: e.g. Pearson orrelation oe�ient

Pro�le of gene 1: x1, x2, . . . , xn, mean x

Pro�le of gene 2: y1, y2, . . . , yn, mean y

C(x, y) =

∑n

i=1
(xi − x)(yi − y)

√

∑n

i=1
(xi − x)2

∑n

i=1
(yi − y)2

Number between -1 and 1, 1 for linearly orrelated data

Distane d(x, y) = 1− C(x, y)

Also other options, e.g. Eulidean distane

11



Hierarhial lustering

� Similar to neighbor joining method for building phylogeneti trees

� Start with eah gene in a separate group

� Find two losest groups and join them to one

� Repeat until all genes are in one group

� Distane of two groups: e.g. distane of losest genes from one

and the other group or average of distanes over all pairs

� The result is a tree representing hierarhy of lusters

A B C D E

gén A 0 0.6 0.1 0.3 0.7

gén B 0.6 0 0.5 0.5 0.4

gén C 0.1 0.5 0 0.6 0.6

gén D 0.3 0.5 0.6 0 0.8

gén E 0.7 0.4 0.6 0.8 0

A C D B E
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Hierarhial lustering - example

Distane of two groups: distane of losest genes from one and the

other group (single linkage lustering)

A B C D E

gén A 0 0.6 0.1 0.3 0.7

gén B 0.6 0 0.5 0.5 0.4

gén C 0.1 0.5 0 0.6 0.6

gén D 0.3 0.5 0.6 0 0.8

gén E 0.7 0.4 0.6 0.8 0

A C

A+C B D E

A+C 0 0.5 0.3 0.6

B 0.5 0 0.5 0.4

D 0.3 0.5 0 0.8

E 0.6 0.4 0.8 0

A C D

A+C+D B E

A+C+D 0 0.5 0.6

B 0.5 0 0.4

E 0.6 0.4 0 B E

A+C+D B+E

A+C+D 0 0.5

B+E 0.5 0

A C D B E

13



Example: part of the miroarray data

Clustering helps to visualize data,

similar genes get lose to eah other

14



SID112179  EST  T91987
EST  W04525
SID377004  EST  AA057780
SID40630  Paired basic amino acid cleaving system 4
ESTs, Highly  similar to ZINC FINGER PROTEIN 91 [Homo sapiens]
EST  W88695
SID32915  EST  R43729
EST  R51510
Homo sapiens GDP-L-fucose pyrophosphorylase (GFPP) mRNA, complete cds
SID471429  ESTs, Moderately similar to putative transcription factor CA150 [H.sapiens]
SID357806  ESTs, Highly  similar to HYPOTHETICAL 9.8 KD PROTEIN ZK652.3 IN CHROMOSOME III [Caenorhabditis elegans]
SID285946  EST  N66534
SID509503  Homo sapiens phospholipid scramblase mRNA, complete cds
Lamin B receptor
EST  AA025540
Human ATPase, DNA-binding protein (HIP116) mRNA, 3’ end
SID291087  EST  N72130
SID292326  DNA primase polypeptide 2A (58kD)
SID362500  EST  AA018594
EST  R70903
SID510006  Interferon-inducible 56-KDa protein
EST  AA037511
EST  AA052967
H.sapiens mRNA for hcgVIII protein
SID52705  Homo sapiens clones 24622 and 24623 mRNA sequence
SID287239  EST  N66980
SID302400  Epidermal growth factor receptor pathway substrate 15
EST  T91871
EST  R55334
EST  T89077
SID47767  EST  H11911
EST  H12318
SID127578  Human DEAD-box protein p72 (P72) mRNA, complete cds
SID79319  EST  T63170
EST  W95909
SID236277  EST  H61274
SID362009  ESTs, Highly  similar to GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE PROTEIN GADD153 [Homo sapiens]
SID265750  X-LINKED HELICASE II
EST  W15407
SID362385  EST  AA018444
EST  AA031778
EST  N68337
SID39685  EST  R51896
SID509633  ESTs, Moderately similar to Kryn [M.musculus]
SID123567  EST  R00824
Human hSIAH1 mRNA, complete cds
SID45242  EST  H07905
Homo sapiens GBAS (GBAS) mRNA, complete cds
SID471535  Human lipid-activated, protein kinase PRK2 mRNA, complete cds
SID418128  Homo sapiens ring finger protein (FXY) mRNA, complete cds
SID488130  EST  AA047419
Homo sapiens HMG box containing protein 1 mRNA, complete cds
EST  N32165
SID252962  EST  H88517
ERF-2
SID346099  EST  W73942
H.sapiens ERF-2 mRNA
SID291571  Human mRNA for histamine N-methyltransferase, complete cds
CDK6 inhibitor p18
EST  N63536
Homo sapiens clone 24651 mRNA sequence
EST  H20847
EST  R43139
EST  H29270
DP2 (E2F dimerization partner 2)
EST  H92461
HEAT SHOCK FACTOR PROTEIN 2
SID221527  EST  H92076
SID221898  EST  H83658
EST  R73580
EST  AA013256
SID290479  EST  N67978
Human forkhead protein FREAC-2 mRNA, partial cds
SID278125  Dihydropyrimidine dehydrogenase
SID272155  EST  N31484
EST  AA035360
EST  H27880
EST  W74533
EST  N79013
SID471393  EST  AA034524
ADP-ribosylation factor 4-like
WEE1-LIKE PROTEIN KINASE
EST  AA057170
EST  R33609
EST  AA042944
EST  T72562
EST  N64669
SID469387  H.sapiens garp gene mRNA, complete CDS
EST  R60336
SID277996  EST  N63445
Human protein tyrosine kinase t-Ror1 (Ror1) mRNA, complete cds
SID162059  ESTs, Moderately  similar to ATP-BINDING CASSETTE TRANSPORTER 2 [Mus musculus]
SID469850  EST  AA028136
SID364033  EST  AA021607
EST  N47794
SID222387  EST  H86088
EST  AA045506
TISSUE FACTOR PATHWAY INHIBITOR PRECURSOR
SID357348  EST  W93502
Damage-specific DNA binding protein 2 (48 kD)
SID34346  Human mRNA for KIAA0203 gene, complete cds
EST  W92305
EST  H08856
SID380425  Adducin 3 (gamma)
SID509833  INTERFERON-INDUCED 54 KD PROTEIN
BINDING REGULATORY FACTOR
H.sapiens mRNA for Ndr protein kinase
SID122585  Homo sapiens mRNA for KIAA0602 protein, partial cds
SID25992  EST  R37278
EST  AA011444
SID297445  Homo sapiens DNA recombination and repair protein hNgs1 (hNGS1) mRNA, complete cds
Human DEAD-box protein p72 (P72) mRNA, complete cds
EST  N38985
SID346311  EST  W74140
SID299290  EST  N75545
Human Bruton’s tyrosine kinase-associated protein-135 mRNA, complete cds
SID429074  EST  AA005169
SID364715  Homo sapiens thrombospondin 3 (THBS3) gene, complete cds
SID197549  EST  R87731
SID297604  EST  N69835
Human B4-2 protein mRNA, complete cds
ESTs, Highly similar to alpha-adducin [H.sapiens]
SID328922  EST  W45465
EST  AA010624
SID281745  EST  N51744
EST  N79778
SID277895  EST  N64209
SID291387  EST  N72289
SID280659  EST  N50448
Aminolevulinate, delta-, synthase 2 (sideroblastic/hypochromic anemia)
Homo sapiens LIM domain binding protein (LDB1) 
High-mobility group (nonhistone chromosomal) protein 2
Homo sapiens antigen NY-CO-33 (NY-CO-33) mRNA, complete cds
Mast/Stem cell growth factor receptor
SID48320  EST  H14569
SID278241  EST  N63574
EST  H05133
EST  AA029451
SID160605  EST  H25014
SID273926  EST  N38765
SID284240  EST  N52170
SID381064  EST  AA057433
SID416134  EST  W86006
Cyclin-dependent kinase inhibitor 1C (p57, Kip2)
Homo sapiens mRNA for KIAA0623 protein, complete cds
SID35516  H.sapiens mRNA for cyclin G1
EST  AA011682
Homo sapiens mRNA for KIAA0623 protein, complete cds
H.sapiens DAP-kinase mRNA
EST  AA005212
EST  AA058747
SID365026  Human transmembrane receptor (ror2) mRNA, complete cds
EST  AA011388
EST  AA007439
Human mRNA for KIAA0188 gene, partial cds
SID50073  EST  H17482
SID49385  EST  H15535
EST  R60731
Fibromodulin
EST  H28360
AH-receptor
SID309231  ESTs, Moderately similar to zinc finger protein [R.norvegicus]
EST  N53427
SID44098  EST  H06287
Human cyclin-dependent kinase inhibitor p27kip1 mRNA, complete cds
Hs.648 Cut (Drosophila)-like 1 (CCAAT displacement protein)
SID298306  EST  N73953
EST  AA016001
EST  R43550
EST  H15273
SID49165  EST  H16592
SID381722  EST  AA059074
SID292678  Human mRNA for KIAA0355 gene, complete cds
SID417030  EST  W87769
SID365756  Human mRNA for CMP-sialic acid transporter, complete cds
Homo sapiens mRNA for protein phosphatase 2C (beta)
SID469194  Tropomodulin
Human clone 23693 mRNA sequence
SID365087  EST  AA024606
E3 UBIQUITIN-PROTEIN LIGASE (NEDD-4) protein
Homo sapiens mRNA for KIAA0643 protein, partial cds
Human G protein-activated inwardly rectifying potassium channel HGIRK1/Kir3.1 mRNA, complete cds
Meis1 (mouse) homolog
SID208950  Aldehyde dehydrogenase 10 (fatty aldehyde dehydrogenase)
SID149477  EST  H00168
Human syntaxin 7 mRNA, complete cds
SID236188  EST  H62361
Fibrillin 1 (Marfan syndrome)
SID29194  POLYPOSIS LOCUS PROTEIN 1
SID273078  ESTs, Highly  similar to HYPOTHETICAL 67.6 KD PROTEIN ZK637.3 IN CHROMOSOME III [Caenorhabditis elegans]
EST  AA045111
Alpha-1 type 3 collagen  
SID287028  Homo sapiens cAMP-specific phosphodiesterase 8A (PDE8A) mRNA, partial cds
Homo sapiens mRNA for putative progesterone binding protein
CYCLIN-DEPENDENT KINASE INHIBITOR 1
SID116819  Homo sapiens clone 23887 mRNA sequence
SID214028  Homo sapiens mRNA for stearoyl-CoA desaturase
SID21829  EST  T65590
SID137704  EST  R37986
SID61539  Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase), polypeptide 9
EST  W78151
SID376951  EST  AA047641
EST  W69445
Spectrin, beta, non-erythrocytic 1
SID323555  FYN oncogene related to SRC, FGR, YES
Transforming growth factor, beta receptor III (betaglycan, 300kD))
SID365251  EST  AA024914
SID265868  EST  N21470
SID43006  EST  R59736
SID281146  EST  N50955
Homo sapiens clone 23785 mRNA sequence
EST N75026
EST  R71462
SID429409  EST  AA007609
SID42629  EST  R60996
SID299673  Homo sapiens clone 23645 mRNA sequence
Membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)
Thymosin beta-4
EST  AA037718
SID366364  EST  AA025786
Catalase
SID484622  Homo sapiens clone 24636 mRNA sequence
EST  AA036947
EST  AA040147
EST  H85971
EST  H01236
SID257009  EST  N26801
SID128329  EST  R12563
Laminin, alpha 2 (merosin, congenital muscular dystrophy)
Wingless-type MMTV integration site 2, human homolog
SID131285  EST  R24284
SID360233  EST  AA012996
SID281493  GLUTAMATE RECEPTOR 1 PRECURSOR
Annexin III (lipocortin III)
EST  N20862
SID229535  EST  H66595
Asparagine synthetase
EST  W72188
ESTs, Highly  similar to PROBABLE PHOSPHOSERINE AMINOTRANSFERASE [Oryctolagus cuniculus]
SID415303  Human mRNA for KIAA0018 gene, complete cds
Cytochrome B561
Fibrillin 2
Squalene epoxidase
EST  N74313
EST  AA057199
3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE
MAC30 (differentially expressed in meningiomas)
SID486055  Cytochrome P450 IB1 (dioxin-inducible)
EST  N95180
Cytochrome P450, 51 (lanosterol 14-alpha-demethylase)
EST  AA029996
FARNESYL-DIPHOSPHATE FARNESYLTRANSFERASE
SID347007  EST  W79450
Mesoderm specific transcript (mouse) homolog
SID208960  Dipeptidylpeptidase IV (CD26, adenosine deaminase complexing protein 2)
SID37021  EST  R49183
Human mRNA for DB1, complete cds
EST  W89018
Homo sapiens protein 4.1-G mRNA, complete cds
EST  H19324
Ribosomal protein L5
SID254433  Homo sapiens oligodendrocyte-specific protein (OSP) mRNA, complete cds
EST  H93791
Cellular retinoic acid-binding protein 2
H factor (complement)-like 1
EST  AA029995
IPP isomerase
SID376386  EST  AA039663
Homo sapiens insulin induced protein 1 (INSIG1) gene, complete cds
IPP isomerase
IPP isomerase
SID209731  EST  H52219
SID489285  Ribosomal protein L17
Carnitine palmitoyltransferase I (CPTI)
SID471855  Lumican
EST AA180272
SID428443  EST  AA004918
SID376416  Complement component C1r
SID416406  ESTs, Highly  similar to COMPLEMENT RECEPTOR TYPE 2 PRECURSOR [Homo sapiens]
Cytochrome B561
SID364730  Homo sapiens P8 protein mRNA, complete cds
Ribonuclease, RNase A family, 1 (pancreatic)
SID415669  EST  W84708
SID343119  EST  W67250
SID486735  Human peptidyl-prolyl isomerase and essential mitotic regulator (PIN1) mRNA, complete cds
SID469959  EST  AA029909
SID487537  H.sapiens mRNA for selenoprotein P
EST AA021170
Lipoprotein lipase
Apolipoprotein D
Caldesmon
SID377346  Complement component 1, s subcomponent
SID381721  EST  AA059077
Human mRNA for dihydropyrimidinase related protein-3  complete cds
SID46127  EST  H09359
SID375479  EST  AA026761
SID488947  EST  AA047080
SID381836 EST
Activating transcription factor 3 (ATF3)
SID254436  IMMEDIATE-EARLY RESPONSE PROTEIN NOT
P55-C-FOS PROTO-ONCOGENE PROTEIN
Early growth response protein 1
SID120386  EST  T95837
EST  AA016305
SID512337  Ribosomal protein S5
SID469297  Homo sapiens mRNA for DEC1  complete cds
SID61419  EST  T40920
Human Gem GTPase (gem) mRNA, complete cds
SID129778  Transferrin receptor (p90, CD71)
SID238621  EST  H65122
EST  T50056
Vascular endothelial growth factor
SID512204  ESTs, Highly  similar to AAC-RICH MRNA CLONE AAC3 PROTEIN [Dictyostelium discoideum]
SID343061  GRAVIN
Connective tissue growth factor
SID428028  ATP citrate lyase
SID489156  EST  AA056549
SERINE/THREONINE-PROTEIN KINASE SGK 
SERINE/THREONINE-PROTEIN KINASE SGK 
Myeloid cell leukemia sequence 1 (BCL2-related)
Myeloid cell leukemia sequence 1 (BCL2-related)
SID488548  Human pre-B cell enhancing factor (PBEF) mRNA, complete cds
Interleukin 6 (B cell stimulatory factor 2)
Endothelin 1 {alternative products}
MAP KINASE PHOSPHATASE-1
MAP KINASE PHOSPHATASE-1
MAP KINASE PHOSPHATASE-1
MAP KINASE PHOSPHATASE-1
MAP KINASE PHOSPHATASE-1
DNA-binding protein CPBP (CPBP)
Homo sapiens clone 23767 and 23782 mRNA sequences
Platelet-derived growth factor receptor, beta polypeptide
SID376394  Protein phosphatase 4 (formerly X), catalytic subunit
Jun B proto-oncogene
Mitogen induced nuclear orphan receptor (MINOR)
IEX-1
Human TGF-beta inducible early protein (TIEG) mRNA, complete cds
TGF-beta inducible early protein
DUAL SPECIFICITY MITOGEN-ACTIVATED PROTEIN KINASE KINASE 3
PUTATIVE DNA BINDING PROTEIN A20
Protein-tyrosine-phosphatase (tissue type: foreskin)
EST  H02832
EST  T48819
Stanniocalcin precursor
HUMAN IMMUNODEFICIENCY VIRUS TYPE I ENHANCER-BINDING PROTEIN 2
Bone morphogenetic protein receptor, type II (serine/threonine kinase)
EST AA688119
EST W25116
ETS-2
Macrophage inflammatory protein-2-alpha precursor (MIP-2 alpha)
ETS-2
Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)
Coagulation factor III (thromboplastin, tissue factor)
Fibroblast growth factor 2 (basic)
Fibroblast growth factor 2 (basic)
Interleukin 8
Fibroblast growth factor 7 (keratinocyte growth factor)
SID306147  EST  N90531
EST  R36703
Coagulation factor III (thromboplastin, tissue factor)
Homo sapiens HuUAP1 mRNA for UDP-N-acetylglucosamine pyrophosphorylase, complete cds
Human guanine nucleotide regulatory protein (NET1) mRNA, complete cds
Plasminogen activator, urokinase receptor
EST AA053251
Human RGP4 mRNA, complete cds
SID52519  EST  H24396
SID162077  EST  H26271
Thrombomodulin
SID346510  Homo sapiens hCPE-R mRNA for CPE-receptor, complete cds
EST  AA053251
SID47424  EST  H11257
S-ADENOSYLMETHIONINE SYNTHETASE GAMMA FORM
SID364959  Hexosaminidase B (beta polypeptide)
Small inducible cytokine A2 (monocyte chemotactic protein 1, homologous to mouse Sig-je)
SID428844  Human mRNA for KIAA0157 gene, partial cds
Interleukin 1, beta
Intercellular adhesion molecule 1 (CD54), (ICAM1)
EST  W51763
SID487232  Homo sapiens actin-binding protein homolog ABP-278 mRNA, complete cds
SID509643  Human mRNA for KIAA0034 gene, complete cds
Homo sapiens regulator of G-protein signalling 12 (RGS12) mRNA, complete cds
Plasminogen activator inhibitor  type I
Plasminogen activator inhibitor, type I
Fc fragment of IgG, low affinity IIa, receptor for (CD32)
SID376725  Tropomyosin alpha chain (skeletal muscle)
EST  N40987
SID145292  Collagen, type IV, alpha 1
EST  AA044617
SID509525  DESMOPLAKIN I AND II
N-ACETYLLACTOSAMINE SYNTHASE
SID73878  EST  T54874
Homo sapiens clone 24589 mRNA sequence
T-COMPLEX PROTEIN 1, EPSILON SUBUNIT
Prothymosin alpha
Protein-tyrosine-phosphatase (tissue type: foreskin)
ESTs  Highly  similar to GRPE PROTEIN HOMOLOG PRECURSOR [Drosophila melanogaster]
SID301487  Homo sapiens mRNA for DEC1, complete cds
EST AA054706
Human Gu protein mRNA, partial cds
AMINOPEPTIDASE N
EST  W74639
Plasminogen activator inhibitor-2, placental
CTP synthetase
PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR
Homo sapiens lysosomal neuraminidase precursor  mRNA  complete cds
TUMOR-ASSOCIATED ANTIGEN L6
EST  W86798
EST  R53619
Vimentin
SID488223  Homo sapiens down syndrome candiate region 1 (DSCR1) gene, alternative exon 1, complete cds
EST  H01822
ATP SYNTHASE LIPID-BINDING PROTEIN P1 PRECURSOR
Homo sapiens lysyl hydroxylase isoform 2 (PLOD2) mRNA, complete cds
Human elastin gene, partial cds and partial 3’UTR
Cyclin D1 (PRAD1; parathyroid adenomatosis 1)
TISSUE FACTOR PATHWAY INHIBITOR 2 PRECURSOR
EST H49897
SID130482  EST  R21877
TISSUE FACTOR PATHWAY INHIBITOR 2 PRECURSOR
SID296087  Heparin cofactor II
Metallothionein from cadmium-treated cells
Stromal cell-derived factor 1
Human leukemia virus receptor 1 (GLVR1) mRNA, complete cds
SID510189  HEAT SHOCK PROTEIN HSP 90-ALPHA
Human G2 protein mRNA, partial cds
EST  AA037351
ESTs, Highly  similar to TRANSLOCON-ASSOCIATED PROTEIN, GAMMA SUBUNIT [Rattus norvegicus]
ESTs, Highly  similar to OPIOID BINDING PROTEIN/CELL ADHESION MOLECULE PRECURSOR [Bos taurus]
SID253397  Human mRNA for KIAA0368 gene, partial cds
Cadherin 2, N-cadherin (neuronal)
Metallothionein 1A
EST  H73480
Human metallothionein (MT)I-F gene
Endothelial Cell-specific Molecule ESM-1
SID31489  Human mRNA for KIAA0165 gene, complete cds
SID220183  EST  H85111
SID266995  EST  N23200
SID259642  GTP cyclohydrolase 1 (dopa-responsive dystonia) {alternative products}
Tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinflammatory)
SID200577  Human mRNA for KIAA0186 gene, complete cds
SID201350  EST  R99596
SID489175  Acid phosphatase 1, soluble
Cyclin-dependent kinase 7 (homolog of Xenopus MO15 cdk-activating kinase)
SID470455  ESTs, Highly  similar to HYPOTHETICAL 52.9 KD PROTEIN IN SAP155-YMR31 INTERGENIC REGION [Saccharomyces cerevisiae]
SID489127  Stromal cell-derived factor 1
SID509631  FK506-binding protein 1 (12kD)
Endothelial differentiation protein (edg-1)
Human metallothionein I-B gene
Metallothionein 1L
SID344083  EST  W73776
Cytochrome c-1
Homo sapiens mRNA for nucleolar protein hNop56
Phosphofructokinase, platelet
SID294134  Homo sapiens brain expressed ring finger protein mRNA, complete cds
SID306539  RAN binding protein 1
SID469990  Adenine nucleotide translocator 2 (fibroblast)
SID254428  Integrin, alpha 6
SID51894 GTP binding nuclear protein RAN
HEAT SHOCK COGNATE 71 KD PROTEIN
SID512247  Enolase 1, (alpha)
Antigen identified by monoclonal antibody Ki-67
SID510332  Human cytoskeleton associated protein (CG22) mRNA, complete cds
Eukaryotic translation initiation factor 4A (eIF-4A) isoform 1
Prothymosin alpha
Inhibitor of DNA binding 3, (ID3)
FOS-RELATED ANTIGEN 1
Paired basic amino acid cleaving enzyme (furin, membrane associated receptor protein)
SID296240  ESTs, Highly  similar to HYPOTHETICAL 14.6 KD PROTEIN IN REC104-SOL3 INTERGENIC REGION [Saccharomyces cerevisiae]
SID509983  Human nucleolar protein p40 mRNA, complete cds
SID60664  EST  T40595
SID150692  EST  H02191
SID510597  Pyruvate kinase, muscle
SID487930  Human clone 23748 mRNA, complete cds
SID470101  Oxytocin receptor
Human transglutaminase mRNA, 3’ untranslated region
SID363599  EST  AA020014
EST  W79392
SID357161  Homo sapiens mRNA for CRM1 protein, complete cds
SID470008  Homo sapiens thyroid receptor interactor (TRIP7) mRNA, 3’ end of cds
Brain-expressed HHCPA78 homolog [human  HL-60 acute promyelocytic leukemia cells  mRNA  2704 nt]
Brain-expressed HHCPA78 homolog [human, HL-60 acute promyelocytic leukemia cells, mRNA, 2704 nt]
EST  W04611
SID39144  EST  R51770
Human mRNA for KIAA0039 gene, partial cds
SID245840  Homo sapiens geminin mRNA, complete cds
Proliferating cell nuclear antigen
Proliferating cell nuclear antigen
ESTs, Highly  similar to UBIQUITIN-CONJUGATING ENZYME E2-17 KD [Drosophila melanogaster]
SID245209  EST  N54485
SID418097  Centromere protein E (312kD)
Human mRNA for KIAA0175 gene, complete cds
SID43644  EST  H04812
SID140677  EST  R67964
alpha importin
SID365627  EST  AA009683
SID32790  DNA repair protein MSH2
Cyclin A
SID510231  Ribonucleotide reductase M2 polypeptide
RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE M1 CHAIN
SID49950  FLAP ENDONUCLEASE-1
Cyclin A
DNA topoisomerase II alpha
DNA topoisomerase II alpha subunit
SID212374  EST  H68298
Mitotic feedback control protein Madp2 homolog
EST  R40626
EST  T52152
CDC28 protein kinase 2
Cell division cycle 2, G1 to S and G2 to M
Human occludin mRNA, complete cds
Human mRNA for KIAA0069 gene, partial cds
CENP-F kinetochore protein
Cyclin B1
UDP-GLUCURONOSYLTRANSFERASE 2B7 PRECURSOR  MICROSOMAL
SID302922  Human mRNA for KIAA0159 gene, complete cds
Human mRNA for KIAA0092 gene, complete cds
Coagulation factor II (thrombin) receptor
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Classi�ation

� A typial mahine learning problem

� We might want to for example distinguish di�erent types of

tumors aording to gene expression

� We are given examples with known expression and tumor type

� We want to �nd a formula whih from the expression produes

positive number for tumor type 1 and negative number for type 2

� We hoose a family of funtions with unknown parameters

(hypothesis lass)

� Find parameters that give the best aurray on training data

� Auray of the resulting lassi�er tested on testing data

(not used for training)

� The lassi�er then used on expression data with unknown tumor

type
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Toy example: expression of 2 genes

Training data with a known type:

0 1 2 3 4

gene 1

0.0

0.2

0.4

0.6

0.8

1.0

ge
ne

 2 type 1
type 2

Hypothesis lass: linear funtions (linear disriminant)

type 1 tumor if ax+ by + c < 0

The goal is to �nd a, b, c that work well on training data
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Toy example: expression of 2 genes

Resulting lassi�er:

0 1 2 3 4

gene 1

0.0

0.2

0.4

0.6

0.8

1.0

ge
ne

 2 type 1
type 2

a = 1, b = 3, c = −2.85

type 1 tumor if x+ 3y − 2.85 < 0
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Popular lassi�ation tehniques

Logisti regression:

linear disriminant, assigns probability to eah lass, well-known

method from statistis

Support vetor mahines

(SVM): �nd linear disriminant

with no training error whih is most

distant from all training examples

0 1 2 3 4

gene 1

0.0

0.2

0.4

0.6

0.8

1.0

ge
ne

 2 type 1
type 2

Can be generalized to non-linear funtions by mapping vetors to a

higher-dimensional spae
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Popular lassi�ation tehniques

Neural networks:

�neurons� onneted by �synapses�,

output of eah neuron is a weighted ombination of its inputs

Bayesian networks:

probabilisti model generating random expression pro�les

tumor type also a random variable in the model with unknown state

similarly to a state in an HMM
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Gene regulation network from expression data

Input: Expression pro�le for eah gene, perhaps under known

onditions (time series, deletion mutants)

Output: Regulation network; nodes are genes,

direted edge A → B if A regulates B

Expression pro�le similarity may provide undireted edges

The goal is to remove edges resulting from transitivity

and to diret edges orretly (di�ult)

A

B

C D

E

F

G

A

B

C D

E

F

G
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Transription fators (TFs)

Regulation of transription initiation by transription fators:

DNA binding proteins whih help to attrat RNA polymerase

RNA
polymerase

DNA

Gene

 factors
Transcription

Transcription

Human genome has over 2000 TFs.

They an inrease or derese expression.

They an work in groups.
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Example: E2F1 transription fator

� Regulates ell yle

� Binds TTTCCCGC, TTTCGCGC,

and similar variants

A 0 0 0 0 0 0 0 0

C 0 0 0 4 2 10 0 9

G 0 0 0 6 8 0 10 1

T 10 10 10 0 0 0 0 0

� Goal: represent DNA sequenes

bound by a ertain TF

as a sequene motif,

then searh for additional ourrenes

in the genome
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Representation of binding motifs

String with mismathes (onsensus):

motif is a string, ourrenes an have a ertain number of

mismathes given in advane

Example: motif TTTGGCGC + 1 mismath

TTTGGCGC, TTAGGCGC, TTTGCCGC are motif ourrenes

TTTCCCGC not an ourrene

Choosing motif: take the most frequent letter at eah position

A 0 0 0 0 0 0 0 0

C 0 0 0 4 2 10 0 9

G 0 0 0 6 8 0 10 1

T 10 10 10 0 0 0 0 0
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Representation of binding motifs 2

Regular expression:

some positions speify harater sets

[GC℄ means position where C or G is allowed

N means any base

Example: motif TTT[CG℄[CG℄CGC

TTTGGCGC, TTTCCCGC, TTTGCCGC are motif ourrenes

TTAGGCGC is not an ourrene

Choosing motif: allow several most frequent letters at eah position

A 0 0 0 0 0 0 0 0

C 0 0 0 4 2 10 0 9

G 0 0 0 6 8 0 10 1

T 10 10 10 0 0 0 0 0

25



Representation of binding motifs 3

Position spei� soring matrix (PSSM, PWM):

soring matrix, sore for eah letter at eah position

ourrenes ahieve sore higher than threshold T

Example: T = 8

A -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0

C -1.6 -1.6 -1.6 0.6 0.0 1.5 -1.6 1.4

G -1.6 -1.6 -1.6 1.0 1.3 -1.6 1.5 -0.5

T 1.1 1.1 1.1 -2.0 -2.0 -2.0 -2.0 -2.0

TTTCCCGC is an ourrene: 1.1+1.1+1.1+0.6+0.0+1.5+1.5+1.4=8.3

TTTGGCGG is an ourrene: 1.1+1.1+1.1+1.0+1.3+1.5+1.5-0.5=8.1

TTAGGCGC is not: 1.1+1.1-2.0+1.0+1.3+1.5+1.5+1.4=6.4

Constrution of PSSM: next leture
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Finding ourrenes in the genome

� Consider motif in one of the representations:

� Consensus, e.g. TTTGGCGC + 1 mismath

� Regular expression, e.g. TTT[CG℄[CG℄CGC

� Soring matrix, e.g. threshold T = 8 and matrix:

A -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0

C -1.6 -1.6 -1.6 0.6 0.0 1.5 -1.6 1.4

G -1.6 -1.6 -1.6 1.0 1.3 -1.6 1.5 -0.5

T 1.1 1.1 1.1 -2.0 -2.0 -2.0 -2.0 -2.0

� Test eah position in the genome if it is an ourrene

� Ourrenes are potential binding sites
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Finding ourrenes in the genome: problem

� Test eah position in the genome if it is a motif ourrene

� Besides binding sites, often also many random ourrenes

� E-value of a motif: how many ourrenes are expeted in a

random sequene

� For example TTT[CG℄[CG℄CGC appears about one in 30,000

bases

� To improve spei�ity, we an searh for

� lusters of binding sites

� sites validated by experiments

� evolutionarily onserved sites

� Motif databases, e.g. TRANSFAC, JASPAR
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How to �nd binding sites experimentally?

Chromatin immunopreipitation (ChIP)

Using an antibody spei� to a given TF, we an determine

approximate loations of its binding sites

� TF and DNA rosslinked by formaldehyde

� DNA ut to shorter segments

� Segments with rosslinked TF are bound by the antibody

� DNA is isolated and sequened (ChIP-seq)

Problem: we �nd only approximate loation of the binding site

Scale
chr20:

2 kb hg38

62,794,000 62,795,000 62,796,000 62,797,000 62,798,000 62,799,000 62,800,000 62,801,000
GENCODE v32 Comprehensive Transcript Set (only Basic displayed by default)

Transcription Factor ChIP-seq Peaks of E2F1 in K562 from ENCODE 3 (ENCFF445VTT)

MRGBP
OGFR-AS1

29



How to �nd motifs by omputational methods?

. . . without having several examples of a binding site

� Assume we have a group of sequenes, eah ontaining a binding

site of the same TF, but binding preferenes of this TF not known

� The goal is to �nd the most spei� motif, ourring in all

sequenes or ourring more frequently than expeted

� Currently: using ChIP-seq obtain regions of DNA surrounding

binding sites, �nd motifs to re�ne the binding site position

� Originally: take a group of genes with similar expression pro�les,

thus possibly regulated by the same TF

�nd motifs in DNA regions upstream of these genes
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Consensus Pattern Problem (CPP)

Simple formulation of the motif �nding problem

Input: motif length L, sequenes S1, S2, . . . , Sk

Output: motif (string) M of length L

and motif ourrene in eah Si (string si of length L)

suh that the overall number of mismathes between M and si) is

smallest possible

Example:

Input: CAAACAT, AGTAGC, TAACCA, TCTCCTC, L = 4

Output: motif TAAC

Ourrenes and mismathes AAAC 1, TAGC 1, TAAC 0, TCTC 2

Total mismathes 4
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Solving CPP

NP-hard problem

� Idea 1: Try all possible motifs of length L

Problem: Not pratial � why?

� Idea 2: Try all substrings of length L

of input strings S1, . . . , Sk

Problem: Sometimes gives wrong answer � why?

But this always �nds a solution

with ost at most twie the optimum

(2-approximation algorithm)

� Further improvements:

Try onsensus sequenes

of all samples of r substrings from input

PTAS (polynomial-time approximation sheme)

Input: L = 4

CAAACAT,

AGTAGC,

TAACCA,

TCTCCTC

Output:

motif TAAC

Ourrenes

and mismathes:

AAAC 1,

TAGC 1,

TAAC 0,

TCTC 2

Total mismathes 4
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A more pratial approah to motif �nding

Probabilist model generating sequene S

using matrix W of base frequenes in the motif

and bakground frequenes q outside the motif

A 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

C 0.01 0.01 0.01 0.39 0.19 0.97 0.01 0.01 0.89

G 0.01 0.01 0.01 0.59 0.79 0.01 0.97 0.97 0.09

T 0.97 0.97 0.97 0.01 0.01 0.01 0.01 0.01 0.01

q(A) = 0.3, q(C) = 0.2, q(G) = 0.2, q(T ) = 0.3

Motif position in S is hosen randomly and eah base is then

generated aording to q or one olumn of W

This model de�nes Pr(S |W ).
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Motif �nding based on probabilisti models

Input: motif length L, sequenes S1, . . . , Sk, frequenies q

Output: motif as a frequene matrix M maximizing likelihood

Pr(S1|W ) · . . . · Pr(Sk|W )

� Hard problem, addressed by heuristi algorithms

� For example EM (expetation maximalization)

� Loal optimization, onverging to a loal maximum of likelihood

� Software: MEME
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EM algorithm overview

� Initialization:

Choose initial matrix W

(e.g. based on one input substring of length L)

� Iteration:

1. Assign eah position j in sequene Si weight pi,j orresponding

to probability that Si[j] is a start of the motif W .

2. Compute W from all possible ourrenes in S1, . . . , Sk

weighted by pi,j

Iterations inrease likelihood until onvergene.

Repeat, starting from many di�erent starting values W
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Example of the EM algorithm

A 0.10 0.10 0.10 0.10 0.10

C 0.10 0.10 0.10 0.70 0.70

G 0.10 0.10 0.10 0.10 0.10

T 0.70 0.70 0.70 0.10 0.10

A 0.31 0.14 0.06 0.07 0.07

C 0.06 0.10 0.19 0.71 0.61

G 0.12 0.17 0.29 0.14 0.25

T 0.51 0.60 0.46 0.08 0.07

ց ր

T T T C C C G G T T G C G T C T A C A A

A C C C C G G A T G C A T T C C T C G T

G G G C C C A A T G C C G C G T A C T A

G T A T G C A T T C C C G A T A C G G A

C A T A A T G A A A T A C A T G G C G A

A A A G G C T A T C G C G A A C T T A A

A A G G C T C G T G G C G C C A G C G G

A G A G T A T T C G C G T G T T G A G C

A T G C C G A C T T T A G T G A T T T C

G C T T T A T C T G T C A A G G C G A G

36



Example of the EM algorithm: next iteration

A 0.31 0.14 0.06 0.07 0.07

C 0.06 0.10 0.19 0.71 0.61

G 0.12 0.17 0.29 0.14 0.25

T 0.51 0.60 0.46 0.08 0.07

A 0.47 0.09 0.01 0.02 0.03

C 0.02 0.11 0.20 0.80 0.58

G 0.08 0.22 0.48 0.15 0.35

T 0.42 0.58 0.30 0.03 0.03

ց ր

T T T C C C G G T T G C G T C T A C A A

A C C C C G G A T G C A T T C C T C G T

G G G C C C A A T G C C G C G T A C T A

G T A T G C A T T C C C G A T A C G G A

C A T A A T G A A A T A C A T G G C G A

A A A G G C T A T C G C G A A C T T A A

A A G G C T C G T G G C G C C A G C G G

A G A G T A T T C G C G T G T T G A G C

A T G C C G A C T T T A G T G A T T T C

G C T T T A T C T G T C A A G G C G A G
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Example of the EM algorithm: after 20 iterations

A 0.10 ǫ ǫ ǫ ǫ

C 0.12 0.52 0.48 1− 3ǫ ǫ

G ǫ 0.48 0.52 ǫ 1− 3ǫ

T 0.78 ǫ ǫ ǫ ǫ

T T T C C C G G T T G C G T C T A C A A

A C C C C G G A T G C A T T C C T C G T

G G G C C C A A T G C C G C G T A C T A

G T A T G C A T T C C C G A T A C G G A

C A T A A T G A A A T A C A T G G C G A

A A A G G C T A T C G C G A A C T T A A

A A G G C T C G T G G C G C C A G C G G

A G A G T A T T C G C G T G T T G A G C

A T G C C G A C T T T A G T G A T T T C

G C T T T A T C T G T C A A G G C G A G
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Summary

� Miroarrays or RNA-seq an haraterize expression levels of many

genes at one, but produe noisy data

� Clustering (zhlukovanie) an �nd similar genes

no prior training set is neessary (unsupervised learning)

� Classi�ation an distinguish e.g. diseases aording to expression

needs training data with known answers (supervised learning)

� Expression data help to build regulatory networks

� Binding motifs an be represented in various forms

(string, regular expression, soring matrix)

� These motifs are not su�iently spei�, therefore it is hard to

reognize binding sites in the genome

� EM algorithm for �nding new motifs in sequenes
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Announements

� Homework 2 published, submit until November 30 22:00

� Journal lub meetings:

group 4 done,

groups 2,5 met, please write a short report

group 6 meeting tonight
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Protein struture and funtion

Bro¬a Brejová

November 18, 2021
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Proteins

Strings of 20 di�erent amino aids with di�erent hemial properties:

Amino Aid Side hain Its properties

Alanine (A) -CH3 hydrophobi

Arginine (R) -(CH2)3NH-C(NH)NH2 basi

Asparagine (N) -CH2CONH2 hydrophili

Asparti aid (D) -CH2COOH aidi

Cysteine (C) -CH2SH hydrophobi

Glutami aid (E) -CH2CH2COOH aidi

Glutamine (Q) -CH2CH2CONH2 hydrophili

Glyine (G) -H hydrophili

Histidine (H) -CH2-C3H3N2 basi

Isoleuine (I) -CH(CH3)CH2CH3 hydrophobi

Leuine (L) -CH2CH(CH3)2 hydrophobi

Lysine (K) -(CH2)4NH2 basi

Methionine (M) -CH2CH2SCH3 hydrophobi

Phenylalanine (F) -CH2C6H5 hydrophobi

Proline (P) -CH2CH2CH2- hydrophobi

Serine (S) -CH2OH hydrophili

Threonine (T) -CH(OH)CH3 hydrophili

Tryptophan (W) -CH2C8H6N hydrophobi

Tyrosine (Y) -CH2-C6H4OH hydrophobi

Valine (V) -CH(CH3)2 hydrophobi
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Protein struture

� Primary struture: sequene of amino aid

� Seondary struture: regular strutural motifs

alpha helix, beta sheet

� Tertiary struture: exat 3D positions of atoms

� Quaternary struture: interations of several proteins in a

omplex

Myoglobin, the �rst protein with a known struture

[Kendrew et al 1958℄

4



Experimental struture determination

� X-ray rystallography

� requires rystal form of the protein

� NMR (nulear magneti resonane spetrosopy)

� mainly used on short proteins

� Cryo-EM (ryogeni eletron mirosopy)

� less aurate, good for large protein omplexes

� Expensive and di�ult proess

� Database of strutures PDB

184 000 protein strutures

(UniProt has over 200 million of sequenes)

5



Bioinformatis problem: protein struture predition, protein

folding

Input: protein sequene

Output: 3D positions of atoms or amino aids

Ab initio methods

� Find a struture with the lowest free energy

� Physis-based formulas for approximating energy

� fores among atoms of the protein and surrounding water

� Very hard omputational problem

� moleular dynamis simulation

� optimization methods, e.g. gradient desent, simulated annealing

� Useful for short proteins and improving approximate strutures
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Pratial approahes to protein struture predition

For a query protein:

� Chek if it has a known struture in PDB

� If not, try to �nd a similar protein in PDB (BLAST),

query likely a similar struture

� If no appropriate BLAST math, try to �nd similar proteins by

more sensitive approahes, protein pro�les (this leture)

� Even more distant homology an be found by protein threading

� Reently, approahes based on deep learning (neural networks)

quite suessful

� We an try to improve found strutures by energy minimization

� Predited strutures an be also found in databases
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Protein threading

� Even proteins with very di�erent sequenes an have similar

strutures

� We an try to �thread� the query protein to eah known struture

� A speial form of alignment taking into aount interations of

amino aids in the known struture

� Computationally hard problem
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Newest approahes: deep neural networks

� CASP ompetition every two years

� In 2018, 2020 won by AlphaFold designed by DeepMind/Google.

In 2020, AlphaFold won by a large margin,

predited very well 2/3 of strutures.

It ombines new ideas and existing approahes.

� Key idea used already before AlphaFold: o-evolution detetion

Find many homologs of the query protein

(even if no struture known),

build a multiple alignment,

�nd positions that hange together in evolution,

these are potential 3D ontats
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Newest approahes: deep neural networks

� AlphaFold 1 (2018):

(1) Predition of amino aid distanes by a neural network.

(2) Finding struture agreeing well with distanes

and an energy model using standard numerial optimization

(gradient method) [animation℄

� AlphaFold 2 (2020):

ombines both steps to a single neural network,

whih is run repeatedly on its outputs

10
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Reall: Pratial approahes to protein struture predition

For a query protein:

� Chek if it has a known struture in PDB

� If not, try to �nd a similar protein in PDB (BLAST),

query likely a similar struture

� If no appropriate BLAST math, try to �nd similar proteins by

more sensitive approahes, protein pro�les (this leture)

� Even more distant homology an be found by protein threading

� Reently, approahes based on deep learning (neural networks)

quite suessful

� We an try to improve found strutures by energy minimization

� Predited strutures an be also found in databases
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Protein domains and families

Domain (doména)

� Part of a protein with an independent struture

� Many proteins ontain multiple domains

� Domains an be rearranged during evolution

Family (rodina)

� Group of proteins or domains with similar sequene, struture and

funtion

� If we know the struture of one family member, others might have

a similar struture
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Proteins as mosais of domains

Pfam database

Domains in proteins lassi�ed to over 18 thousand families

77% of proteins have at least one known domain

53% protein sequenes are overed by known domains

Example:

4 out of 91 arhitetures with Zin �nger, C4 type domain (Pfam)

5124 proteins:

208 proteins:

1220 proteins:

170 proteins:

ZF−C4 Hormone_recep

ZF−C4

Hormone_recepZF−C4ERbeta_N

Hormone_recepZF−C4Nuc_recep−AF1
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Charaterization of a protein family

� Pairwise alignments (BLAST) between a query protein and family

members do not always �nd weaker similarity

� Multiple sequene alignment of a family highlights important

onserved positions
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Probabilisti pro�le of a family

(pro�le, position spei� sore matrix PSSM)

� In an alignment, ompute ei(x): frequeny of amino aid x in

olumn i

� Create a model whih generates sequene x1, x2, . . . , xn with

probability

e1(x1) · e2(x2) · · · en(xn)

� Bakground model: sequene was generated randomly with amino

aid x having frequeny q(x)

� Sore: log likelihood ratio in the two models

log

∏
n

i=1 ei(xi)∏
n

i=1 q(xi)
=

n∑

i=1

log
ei(xi)

q(xi)
=

n∑

i=1

si(xi)
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Toy example of an PSSM

� Consider only leuine L a alanine A

� Multiple alignment of 10 sequenes has the following ounts:

1 2 3 4

A 2 6 9 1

L 8 4 1 9

� Bakground model q(A) = 30%, q(L) = 70%

� Probability of sequene LAAL

� in the pro�le model: 0.8 · 0.6 · 0.9 · 0.9 = 0.3888,

� in the bakground model: 0.7 · 0.3 · 0.3 · 0.7 = 0.0441

� Sore for LAAL: log2(0.3888/0.0441) = 3.14

� Sore for LALA: log2(0.0048/0.0441) = −3.20
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Toy example of an PSSM

� Multiple alignment of 10 sequenes has the following ounts:

1 2 3 4

A 2 6 9 1

L 8 4 1 9

� Bakground model q(A) = 30%, q(L) = 70%

� Sore of alanine in olumn 1: s1(A) = log2(0.2/0.3) = −0.58,

sore of leuine in olumn 1: s1(L) = log2(0.8/0.7) = 0.19

� Entire sore table:

1 2 3 4

A -0.58 1.00 1.58 -1.58

L 0.19 -0.81 -2.81 0.36

� Sore of LAAL is 0.19 + 1 + 1.58 + 0.36 = 3.13

Sore of LALA is 0.19 + 1− 2.81− 1.58 = −3.20
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Pseudoounts

If some amino aid is ompletely absent at a given position, it would

get probability 0 in the model

1 2 3 4

A 2 6 9 0

L 8 4 1 10

To avoid this problem, add a small value, pseudount, to eah ount in

the table (e.g. add 0.5):

1 2 3 4

A 2.5 6.5 9.5 0.5

L 8.5 4.5 1.5 10.5

Then ompute sores as before
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Pro�le HMMs (pro�lové HMM)

Extend pro�les with insertions and deletions

PSSM as an HMM:

M3 endM1 M2begin

Pro�le HMM: math state, insert state, delete state

M1 M2 M3 endbegin

D1

I1I0 I2 I3

D3D2
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Construting pro�le HMMs

M1 M2 M3 endbegin

D1

I1I0 I2 I3

D3D2

� Start from a multiple alignment

� Columns with a small fration of gaps onverted to math states,

remaining olumns handled by insert states

� In eah olumn ompute Ei(a): the number of ourrenes of a

� Emission probability ei(a) =
Ei(a)∑
b
Ei(b)

� We add pseudoounts to avoid zero probabilities,

ei(a) =
Ei(a)+c∑
b
(Ei(b)+c)

� Transition probabilities set aording to gaps

� Groups of very similar sequenes used with lower weights
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Using pro�les and pro�le HMMs

Where to get pro�les / pro�le HMMs?

� Pfam database ontains domain families represented as pro�le

HMMs

� PSI-Blast reates PSSMs on the �y from similar proteins

� PSSMs are also used to present binding site motifs in DNA

(leture on regulation)

How to �nd pro�le ourrenes in a protein sequene?

� Similar to loal alignemnt

� PSSM pro�les: dynami programming with �xed gap sores

� Pro�le HMMs: Viterbi/forward algorithms

Use the resulting sore / probability to deide if a protein belongs to

the family
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Reall: Pratial approahes to protein struture predition

For a query protein:

� Chek if it has a known struture in PDB

� If not, try to �nd a similar protein in PDB (BLAST),

our query likely has a similar struture

� If no appropriate BLAST math, try to �nd similar proteins by

more sensitive approahes, protein pro�les (this leture)

� Even more distant homology an be found by protein threading

� Reently, approahes based on deep learning (neural networks)

quite suessful

� We an try to improve found strutures by energy minimization

� Predited strutures an be also found in databases
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Protein funtion

� Determined experimentally for some proteins

� Transfered to other proteins based on sequene similarity,

domains, position in the genome and other data

� Swissprot/Uniprot ollets known information about protein

funtion

� Protein lassi�ation using Gene ontology (GO)

Example of a term in GO:

Aession: GO:0034220

Name: ion transmembrane transport

Ontology: biologial_proess

De�nition: A proess in whih an ion is transported from one side of a

membrane to the other by means of some agent suh as a transporter

or pore.

Comment: Note that this term is not intended for use in annotating

lateral movement within membranes.
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Gene ontology (GO)

Hierarhy of terms:

24



Other examples of HMM and pro�le use in protein analysis

� Prediting seondary struture

� Prediting transmembrane proteins and signal peptides

� Prediting funtional motifs and posttranslational modi�ations

(PROSITE database)

Cyli nuleotide-binding domain signature 1:

[LIVM℄-[VIC℄-x-{H}-G-[DENQTA℄-x-[GAC℄-{L}-x-[LIVMFY℄(4)-x(2)-G

25



Oznamy

� Deadline of HW2 extended until De. 7

� HW3 will be published next week

� Next Thursday De.2: leture and tutorials anelled

� Thursday De.9: leture and tutorials online

� Thursday De.16:

� optional presentations of journal lub during leture time

� tutorial for omp.si. will take plae

� tutorial for biologists possibly anelled

� End of semester deadlines

� HW3 Tuesday De. 14, journal lub reports Friday De. 17

� On Thursday De. 9, we will disuss:

� if you want to present journal lub (disuss in the group)

� date of the exam (bring dates of other exams)

1



Reall: journal lub report

� The main methods and results of the artile in your own words

� Understandable for students of this ourse (both omp.si. and

bio)

� You do not have to over the entire ontent of the artile in the

report and, onversely, you an use other resoures

� Try to express your own view of the topi, do not stritly follow

the text of the artile

� The reommended length is about 1-2 pages per person, one

oherent text

� The report should list the members of the group who have atively

partiipated. They will get the same points (the rest zero)

� Submit via Moodle, 1 pdf per group

2



RNA

Tomá² Vina°

Nov. 25, 2021
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DNA:

RNA:

RNA:

RNA: protein:

transcription to RNA

RNA processing

to protein
translation

regulation

gene
replication
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Properties of RNA

Di�erenes from DNA

� ontains ribose instead of deoxyribose

� ontains urayl instead of thymine (bases A,C,G,U)

� single-stranded moleules, usually shorter

� omplex seondary struture with paired omplementary regions

� pairs A-U, C-G as well non-anonoal pairs e.g. G-U

� various funtions in the ell:

entral role in gene expression (messanger RNA, transfer RNA,

ribosomal RNA),

regulation of expression,

atalythi funtions,

transfer of geneti information for RNA viruses

5



RNA struture

Example: transfer RNA

Seondary struture:

pairing of nuleotides

Tertiary struture:

3D oordinates

Figure soure: Wikipedia
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Sekundárna ²truktúra RNA

Representation using well-parenthesized expression:

((((((((((.....((( ).)).(( ))...)))))))))).

UGCCUGGCGGCCGUAGCG...UAGCGCC...GGGAACUGCCAGGCAU

7



Well-parenthesized expression vs. pseudoknots

Left: an do well-parenthesized expression

((((((((((.....((( ).)).(( ))...)))))))))).

UGCCUGGCGGCCGUAGCG...UAGCGCC...GGGAACUGCCAGGCAU

Right: pseudoknot (annot do well-parenthesized expression)

.((((((.(((...[[[.[[[[[))))))))). .℄℄℄℄℄.℄℄℄

UCGACUGUAAAAAAGCGGGCGACUUUCAGUCGC...UGUCGCGCGC

8



Well-parenthesized expression vs. pseudoknots

without pseudoknots

pseudoknot

Approx. 1.4% of paired RNA bases involved in pseudoknots

Yet many algorithms ignore pseudoknots

9



Well-parenthesized expression vs. pseudoknots

Mathematial struture of seondary struture w/o pseudoknots:

If position i is paired with j and position i′ with j′

where i < i′ then either i < i′ < j′ < j or i < j < i′ < j′.

i i′ j′ j

good:

i j i′ j′

good:

i i′ j j′

bad:

10



Problem: determining seondary RNA struture

Input: RNA sequene

Goal: �nd whih bases are paired

Simpli�ed formulation: �nd well-parenthesized expression

orresponding to the struture with the highest number of

omplementary pairs A-U, C-G.

Example:

Input: GAACACAUGUAAAAUUUGUC

Output: ((.(((()))(((.))))))

11



Nussinov algorithm

Dynami programming:

Given RNA x1, . . . , xn.

A[i, j] = the maximum number of mathed pairs in xi, xi+1, . . . , xj

i j

︷ ︸︸ ︷

A[i, j]
i

j
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Nussinov algorithm

Dynami programming:

Given RNA x1, . . . , xn.

A[i, j] = the maximum number of mathed pairs in xi, xi+1, . . . , xj

Reurrene:

Substrings of length 1: no pairs possible ⇒ A[i, i] = 0

Longer substrings:

� xi not involved in a pair: A[i, j] = A[i+ 1, j]

� xi paired with xj : A[i, j] = A[i+ 1, j − 1] + c(xi, xj)

� xi paired with xk (k < j): A[i, j] = A[i, k] +A[k + 1, j]

13



Rekurenia: A[i, j] = max







A[i+ 1, j],

A[i+ 1, j − 1] + c(xi, xj),

maxk=i+1...j−1{A[i, k] +A[k + 1, j]}

0 0 1 1 1 2 3 3 3 3 3 4 5

0 0 1 1 2 2 2 2 3 3 4 4

0 0 1 1 1 2 2 3 3 3 3

0 0 0 1 2 2 2 2 3 3

0 0 1 1 1 1 1 2 3

0 0 1 1 1 1 2 2

0 0 0 1 1 1 2

0 0 0 0 1 2

0 0 0 1 1

0 0 0 0

0 0 0

0 0

0

A

A

C

C

U

U

G

G

A

A

G

G

U

U

C

C

C

C

A

A

A

A

G

G

G

G

c(xi, xj) =





1 if xi-xj is A-U or C-G pair

0 otherwise

A[i, j] = 0 for i ≥ j

A
C

U
G

U A
G

C G

A A
C G

Complexity:

O(n3) time

O(n2) memory
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Minimum free energy (MFE) folding

More realisti formulation

Assumption: the moleule in the state of equilibrium with minimum

Gibbs free energy.

Energies for modules measured experimentally.

Nearest neighbor model: parameters = energies for neighbouring

pairs in helixes, lengths of loops, et.

Derived from experimental measurements.

Example: y: A C G U

5' Cx 3' ----------------------

3' Gy 5' x:A | . . . -2.1

C | . . -3.3 .

G | . -2.4 . -1.4

U | -2.1 . -2.1 .

Algorithms similar to the Nussinov algorithm

[Zuker and Stiegler, 1981℄.
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Algorithms allowing pseudoknots

NP-hard in general [Lyngso and Pedersen, 2000℄.

Slow dynami programming O(n4) � O(n6) for ertain pseudoknot

types [Rivas and Eddy, 1999℄.

Or use heuristis [Ren et al., 2005℄ (repeated greedy formation of

strong helixes).
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Probabilisti models for RNA seondary struture predition

Want: Generative model for pairs sequene, seondary struture

Use: For a given sequene, �nd most probable struture

HMMs are not suitable: annot apture dependenies between distant

pairs

Solution: Stohasti ontext-free grammars (SCFGs)

� extension of ontext-free grammars

� individual rules will get probabilities

17



Stohasti ontext-free grammars (SCFGs)

non-terminals (upper-ase) similar to states in HMMs

terminals (lower-ase) represent nuleotides

rules rewrite non-terminals to strings of terminal and non-terminals

eah rule has assigned probability

Example: single non-terminal, 14 rules (ǫ =empty string)

S →

0.1
︷︸︸︷

aSu |

0.1
︷︸︸︷

uSa |

0.1
︷︸︸︷

cSg |

0.1
︷︸︸︷

gSc |
0.05
︷︸︸︷

aS |

0.05
︷︸︸︷

cS |

0.05
︷︸︸︷

gS |

0.05
︷︸︸︷

uS |

0.05
︷︸︸︷

Sa |

0.05
︷︸︸︷

Sc |

0.05
︷︸︸︷

Sg |

0.05
︷︸︸︷

Su |

0.1
︷︸︸︷

SS |

0.1
︷︸︸︷
ǫ

In eah step hoose the left-most non-terminal

rewrite with a randomly hosen rule:

S → SS → aSuS → acSguS → acuSaguS → acugSaguS →

acugaguS → acugagucSg → acugaguccSgg → acugaguccSagg →

acugaguccaSagg → acuguguccaagg
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Stohasti ontext-free grammars

Example:

S → aSu|uSa|cSg|gSc|aS|cS|gS|uS|Sa|Sc|Sg|Su|SS|ǫ

S → SS → aSuS → acSguS → acuSaguS → acugSaguS →

acugaguS → acugagucSg → acugagucgScg → acugagucgSacg →

acugagucgaSacg → acugugucgaacg

A
C

U
G

U A
G

C G

A A
C G

Problem: Find most probable derivation of given RNA

Bases generated in a single rule represent paired bases

Solution: Dynami programming, algorithm CYK, O(n3) time

Training: Probabilities trained from known RNA strutures
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Grammars vs. energy minization

Grammar advantages:

� parameters an be trained automatially, no expensive experiments

� an be extended to multiple sequenes

Grammar disadvantages:

� simple grammars do not apture full omplexity of the problem

� lower auray

20



RNA sequene evolution

Often orrelation between mutations in paired bases

e.g. C hanges to A, paired G hanges to U simultaneously

Example: several sequenes from t-RNA D-arm

((((.............))))

GCUCAGCC.CGGG...AGAGC

GCCUAGCC.UGGUCA.AGGGC

GUCUAGC...GGA...AGGAU

GAGCAGUU.CGGU...AGCUC

GUUCAAUC..GGU...AGAAC

Problem: given a multiple alignment of RNA sequenes

�nd a ommon RNA struture

(ommon struture will exhibit orrelations between paired bases)
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Common RNA struture for several RNA sequenes

Phylo-SCFG:

� terminals will be whole alignment olumns

use phylogeneti tree struture

� unpaired bases emitted using a regular substition matrix

� paired bases emitted using a 16× 16 substition matrix (all pairs)

22



Problem: Finding known types of RNA genes in genomes

� Rfam database ontains strutures for > 4000 RNA families

represented using probabilisti models

� Similar idea to pro�le HMMs used for representation of protein

families (Pfam database)

� Speial type of SCFGs alled ovariane models

23



Covariane models (CMs)

A
C

U
G

U A
G

C G

A A
C G

S → B1 P1 → aP2u P4 → cP5g

B1 → P1P4 P2 → cP3g P5 → gL2c

P3 → uL1a L2 → aL3

L1 → gE1 L3 → aE2

E1 → ǫ E2 → ǫ

� S =start, Ei =end, Pi =pair,

Li =unpaired base on the left, Ri =unpaired base on the right

other non-terminals to represent indels

� terminals (bases) emitted with probabilities spei� to eah alignment

olumn

e.g. P1 →

0.2

︷ ︸︸ ︷

aP2u |

0.2

︷ ︸︸ ︷

uP2a |

0.4

︷ ︸︸ ︷

cP2g |

0.1

︷ ︸︸ ︷

cP2u
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Covariane models (CMs)

Uses:

�nding ourrenes of a gene in DNA (loal alignment),

�nding struture of a new gene from a known family (global

alignment).

Dynami programming: time O(MND2)

M = the number of non-terminals, proportional to the alignment

length

N = the length of DNA ,

D = max. length of an RNA gene (related to M).

Heuristi speedup: �nd potential sites with sequenes similar to

known family representatives, apply CM only there

25



Problem: RNA seondary struture design

Given RNA seondary struture (pairing)

Find a sequene for whih this is the optimal struture.

No known e�ient algorithm, but fast heuristis work well

−→

A
C

U
G

U A
G

C G

A A
C G

Use: researh on possible RNA strutures, drug design (ribozymes,

riboswithes), RNA for laboratory tehniques, RNA nanostrutures
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Summary

� RNA seondary struture predition:

energy minimization, probabilisti SCFGs

� Can ahieve better results if we use a multiple alignment of several

RNA sequenes with a ommon struture (PhyloSCFG)

� Known RNA families an be represented by ovariane models,

these an be used to loate ourrenes in novel sequenes

� Rfam database

� Most problems an be solved by dynami programming

� somewhat slow

� ignores pseudoknots

� Other interesting problems: RNA design
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Announements

� Today last leture, afterwards tutorial for biologists

� Next Thursday De.16.:

� last tutorial for omp.si.

� optional presentations of journal lub during leture time

(interest?)

� tutorial for biologists possibly anelled

� End of semester deadlines

� journal lub reports Friday De. 17

� HW3 Tuesday De. 21

1



Exam (omp.si. only)

The main part is written:

� You need at least 50% of points

� Time 3 hours

� About 50% of points for simple questions,

� examples will be on the ourse website

� in ase of interest tutorial session before exam

� The rest of the questions mostly designing/modifying an algorithm

or model

� Date?

� Online or in person, depending on irumstanes

� You an use pen, simple alulator

and a heat sheet up to 2 A4 two-sided sheets

2



Written exam, online version (omp.si. only)

� Exam questions and submission in Moodle

� MS teams: annouements, questions

� Write in an editor, reate pdf

or write on paper, san/photo, onvert to pdf

� Allowed aids:

Same as in person (inl. heat sheet)

Text and image editors, software for digitization of handwritten pages

MS Teams to ommuniate with instrutors

Moodle for getting and submitting exam

� Not allowed:

Communiation with other persons exept instrutors

Other webpages

Other software (e.g. speialized bioinformatis programs, ompilers)
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Oral exam

� Only for online exam

� Videoall in MS Teams

� After written exam, time slots over several days

� We will disuss your exam

� You should be able to explain your answers in detail

� Oral exam in�uenes exam grade

� If you are unable to explain your answers, you will get Fx

�Seond hane� exam: the same for as the �rst or oral-only

the dates arranged with those who need them
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Population Genetis

Bro¬a Brejová

Deember 9, 2021
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Population genetis

� Genomes of di�erent individuals of the same speies di�er

� These di�erenes ause di�erenes in phenotype (appearane,

behaviour, diseases,. . . )

� We an sequene multiple individuals and ompare with referene

sequene

Possible appliations:

� Impat of individual geneti di�erenes

� History and struture of populations (subpopulations, migration,

historial hanges in size)
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SNPs (Single Nuleotide Polymorphisms)

� SNP: a single base mutation (present in > 1% individuals)

� Usually only two forms : major and minor allele

� Small hange at some plaes in the genome an ause large

phenotypi hanges

Systemati mapping of SNPs:

1000 Genomes Projet 2008-2015

identify 95% of SNPs with 1% minor allele frequeny

using next generation genome sequening
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Trait/Disease Assoiation Mapping

� Traits and diseases emerge by the ombination of geneti and

environmental in�uenes

� Goal: Identify geneti in�uenes.

� Disease mehanisms?

� What is the risk of inheritane?

� How an we design and target new drugs (pharmaogenomis)?

E.g. mutations of ytohrome family P450 genes

in�uene metabolism of drugs in the liver,

thus in�uene neessary dose
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Diploid genomes

� Human has a diploid genome:

eah human ell ontains two opies of hromosomes 1. . . 22

plus sex hromosomes X,X or X,Y

� From eah pair, one hromosome omes from mother and one

from father

� For a SNP with alleles (forms) a and A,

an individual is homozygote (aa or AA),

or heterozygote (aA)

� A disease aused by allele a an appear only in homozygotes aa,

or also in heterozygotes aA, or more severe for aa than aA

9



Diploid genomes

� Human has a diploid genome:

eah human ell ontains two opies of hromosomes 1. . . 22

plus sex hromosomes X,X or X,Y

� From eah pair, one hromosome omes from mother and one

from father

� For a SNP with alleles (forms) a and A,

an individual is homozygote (aa or AA),

or heterozygote (aA)

� Haplotype: ombination of alleles of di�erent SNPs on the same

hromosome (inherited from one parent)

Diploid individual has two haplotypes

hr1 from mother: . . . A. . . T. . . G. . . . . .

hr1 from father: . . . T. . . C. . . A. . . . . .

10



Testing a single SNP

Contingeny table - the number of haplotypes

Dog size vs allele at hr15:44,228,468 [Sutter et al., 2007℄

allele A allele a total

small dog (< 9 kg) 14 535 549

large dog (> 31 kg) 339 38 377

total 353 573

Test if olumns and rows are independent (null hypothesis)

If null hypothesis rejeted, there is assoiation between SNP and size

(not neessarily ausal)

If null hypothesis not rejeted, assoiation not found

(perhaps will be found with more data)

11



Testing independene in a ontigeny table

allele A allele a total

small dog 14 535 549

large dog 339 38 377

total 353 573 926

Fisher's exat test: (Fisher's exat test) exat probability from

hypergeometri distribution

χ2
test (hí-kvadrát): popular approximate test, appropriate for large

ounts

In pratie also more omplex statistial methods / models

(diploid genome, family relationships, . . . )
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Testing independene in a ontingeny table by χ2
test

allele A allele a total

small dog 14 535 549

large dog 339 38 377

total 353 573 926

Under null hypothesis (independene of rows ans olumns):

Pr(A) = 353/926 = 0.381, Pr(a) = 0.619

Pr(s) = 549/926 = 0.593, Pr(l) = 0.407

Pr(A, s) = Pr(A) Pr(s) = 0.226

Pr(a, s) = Pr(a) Pr(s) = 0.367

Pr(A, l) = Pr(A) Pr(l) = 0.155

Pr(a, l) = Pr(a) Pr(l) = 0.252

Under the null hypothesis we expet 926 haplotypes in the table

divided in ratios 0.226:0.367:0.155:0.252
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Testing independene in a ontingeny table by χ2
test

Real table

Oi,j (observed):

A a total

small 14 535 549

large 339 38 377

total 353 573 926

Expeted under null

Ei,j (expeted):

A a total

small 209.3 339.8 549

large 143.5 233.4 377

total 353 573 926

Compute χ2 =
∑

i∈{s,l}

∑

j∈{A,a}
(Oi,j−Ei,j)

2

Ei,j

χ2 = (14− 209.3)2/209.3 + (535− 339.8)2/339.8 + (339−

143.5)2/143.5 + (38− 233.4)2/233.4 = 724.3

χ2
is a measure of di�erene between tables O and E.

Always χ2 ≥ 0, and χ2 = 0 only if tables equal.
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Testing independene in a ontingeny table by χ2
test

Oi,j (observed):

A a total

small 14 535 549

large 339 38 377

total 353 573 926

Ei,j (expeted):

A a total

small 209.3 339.8 549

large 143.5 233.4 377

total 353 573 926

Compute χ2 =
∑

i∈{s,l}

∑

j∈{A,a}
(Oi,j−Ei,j)

2

Ei,j
= 724.3

Under null hypothesis, χ2
is approximately from χ2(1) distribution,

i.e. hi squared with one degree of freedom.

1 degree: if we know E and 1 number from O, the rest of O an be

omputed

The probability that under null we get by hane χ2 ≥ 724.3 is

1.6 · 10−159
(P-value)

To rejet null hypothesis use threshold e.g. P < 0.05, χ2 > 3.841
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Dependenies between two di�erent SNPs

Consider SNP with alleles p/P and another with alleles q/Q.

Count haplotypes pq, PQ, pQ, Pq

Example: 2000 haplotypes (1000 individuals)

Q q

P 474 611

p 142 773

χ2
= 184.78, P-value 4.4 · 10−42

Columns and rows not independent, dependeny between the SNPs

Example 2: Similar ratios of ounts, but only 30 haplotypes:

Q q

P 7 9

p 2 12

χ2
= 3.0867, P-value 0.07893

Null hypothesis not rejeted for threshold P<0.05 (χ2 > 3.841)

Beware, χ2
not appropriate for suh low ounts
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Why are SNPs dependent?

SNPs on di�erent hromosomes:

� Probabilities of individual alleles often independent

� Pr(pq) = Pr(p) Pr(q), Pr(PQ) = Pr(P ) Pr(Q), et.

� linkage equilibrium (LE, väzbová rovnováha)

SNPs nearby on the same hromosome:

P Q

P Q

P Q p QP Qq p

q

p

� The same mutation happening twie is

rare, reombination also relatively rare

� Allele ombinations not ompletely ran-

dom

� Correleation between SNPs

⇒ linkage disequilibrium (LD, väz-

bová nerovnováha)
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Reombination

Approx. 1-3 reombinations on 1 human

hromosome during meiosis

(prodution of sperm/eggs)

Reombination lowers LD

Assuming uniform reombination

� LD dereases with SNP distane on

a hromosome

� LD dereases with SNP age

� Other fators: population stru-

ture, natural seletion, reombina-

tion hotspots
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Linkage disequilibrium (LD) in the human genome

[The International HapMap Consortium, 2005℄

Region ENm014 (500kB, hr 7), 90 people from Utah
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Bak to dogs: Whole-Genome Assoiation San (WGAS)

� For dog size, WGAS identi�ed 84 kB region

� Causal SNP has to be more �nely mapped by additional

experiments

� Large LD bloks ⇒ only an identify large regions
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Basi model of population genetis: Wright-Fisher model
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Lifeyle of SNPs in Wright-Fisher model

� Population of N haploid organisms

� One allele per organism (A or a)

� New generation reated as a opy of a random parent (random

mating), no in�uene of natural seletion

� Xt: the ount of allele a in generation t

� Markov hain with states Xt ∈ {0, 1, . . . , N}

Pr(Xt = j |Xt−1 = i) =

(

i

N

)j (
N − i

N

)N−j (
N

j

)

(Probability that we have j opies of a in generation t,

given i opies in generation t− 1

� States 0 and N are absorbing
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Random geneti drift

N = 200, X0 = 10, 500 generations

0 100 200 300 400 500

Generation

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

 a
lle

le
 f

re
qu

en
cy

New allele fixation
SNP
Loss of the new allele
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More omplex models of population

� Mutations introdue new alleles, these get eliminated or �xed by

random geneti drift

� Speed of �xation in�uened by population struture or natural

seletion.

� ⇒ More omplex probabisti models.
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Analysis of population history using probabilisti models

Typial model parameters:

� efetive population size

� frequenies of mutation and reombination

These parameters in�uene observed data:

� SNP frequenies (frequeny of minor allele)

� Heterozygoity in diploid individuals

� The number and size of LD bloks

Standard approah: Find parameters of the model best explaining

observed data in sequened individuals
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Example: Population history of orangutans

26



History of a human population from a single human genome

(Li, Durbin 2011)

� Model parameters: e�etive human population time hanging

over time

� Observed data:

� sizes of reombination bloks

� distribution of time to the most reent ommon anestor

(TMRCA)
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History of a human population from a single human genome

Task: Find historial population sizes best explaining observed

statistis
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Population struture

� Assumption so far: new generation produed by random mating

� Most organisms evolve in subpopulations,

with limited migration between populations

� Frequenies of the same SNP in two di�erent populations an be

very di�erent

� ⇒ �false� long-range orrelations between SNPs (e.g., even

between hromosomes) if we work with a mix of subpopulations

� ⇒ erroneous results in WGAS, LD studies, et.
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Example: allele frequenies of a partiular SNP in di�erent

regions

Human Genome Diversity Project

0˚ 30˚ 60˚ 90˚ 120˚ 150˚

−30˚

0˚

30˚

60˚

270˚ 300˚

0˚

30˚SNP: rs2289021

Ancestral Allele: G

Derived Allele: T

from genome.us.edu
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Wild dog population struture

Boyko et al. PNAS 2009; software STRUCTURE Prithard et al. Genetis 2000

� Program STRUCTURE splits population into K subpopulations

(olors)

� Eah olumn represents an individual from the population

� Ratio of olors represents ratio of SNPs in the mixture of the K

subpopulations.
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Algorithm used in STRUCTURE

� Input: Set of haplotypes X, whih we want to separate into K

subpopulations

� De�ne probabilisti model with the following variables:

� Pi,j - frequeny of SNP j in subpopulation i

� Zi,j - assignment of subpopulation to SNP j in haplotype i

� Qi - what portion of SNPs in haplotype i belong to whih

subpopulation

� Model de�nes Pr[X |P,Q,Z] and prior distribution for P,Q

� Output: E[Q |X]
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Algorithm Markov Chain Monte Carlo (MCMC)

� Variables:

� Pi,j - frequeny of SNP j in subpopulation i

� Zi,j - assignment of subpopulation to SNP j in haplotype i

� Qi - what portion of SNPs in haplotype i belong to whih

subpopulation

� Start with some initial values P (0), Z(0), Q(0)
.

In eah iteration obtain a new random sample:

� Sample P (i), Q(i)
from Pr(P,Q |X,Z(i−1))

� Sample Z(i)
from Pr(Z |X,P (i), Q(i))

� For su�ently large m and c mean of sequene

Q(m), Q(m+c), Q(m+2c), . . .

onverges to E[Q |X]
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Summary

� SNPs (single nuleotide polymorphisms) appear and disappear

in populations

� Their frequeny in�uened by natural seletion

� Without reombination, dependeny between SNPs on the same

hromosome

(linkage disequilibrium)

� Reombination reates LD bloks

� LD bloks in�uene the results of whole-genome assoiation

mapping

� Probabilisti models of LD blok size, allele frequenies,

heterozygoity et. an reveal population history

� We should onsider population struture, whih an be estimated

using omputational methods
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Other types of polymorphisms

� Short indels

� Mirosatellites a minisatellites

(simple short repeating sequenes)

13 louses as a standard ��ngerprint� for

omparison of DNA samples in the US

ourts

� Transposons (Alu, LINE, SINE)

Alu has approx. million opies,

approx. 1 new opy in 20 newly born

� Large sale opy number variations
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